Global superconvergence of the mixed finite element methods for 2-D Maxwell equations

被引:0
作者
Lin, JF [1 ]
Lin, Q
机构
[1] Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, LSEC, ICMSEC, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
Maxwell equations; mixed finite element; superconvergence; postprocessing;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Superconvergence of the mixed finite element methods for 2-d Maxwell equations is studied in this paper. Two order of superconvergent factor can be obtained for the k-th Nedelec elements on the rectangular meshes.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
[1]   GLOBAL SUPERCONVERGENCE OF THE MIXED FINITE ELEMENT METHODS FOR 2-D MAXWELL EQUATIONS [J].
Jiafu Lin Institute of Systems Sciences Chinese Academy of Sciences Beijing ChinaQun LinLSEC ICMSEC Academy of Mathematics and System Sciences Chinese Academy of SciencesBeijing China .
Journal of Computational Mathematics, 2003, (05) :637-646
[2]   Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials [J].
Huang, Yunqing ;
Li, Jichun ;
Yang, Wei ;
Sun, Shuyu .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (22) :8275-8289
[3]   Global superconvergence of finite element methods for biharmonic equations and blending surfaces [J].
Li, ZC ;
Lu, TT .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) :413-437
[4]   Global superconvergence for Maxwell's equations [J].
Lin, Q ;
Yan, NN .
MATHEMATICS OF COMPUTATION, 2000, 69 (229) :159-176
[5]   Superconvergence analysis of nonconforming mixed finite element methods for time-dependent Maxwell's equations in isotropic cold plasma media [J].
Yao, Changhui ;
Li, Jinfa ;
Shi, Dongwei .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) :6466-6472
[6]   Extrapolation of the Nédélec element for the Maxwell equations by the mixed finite element method [J].
Hehu Xie .
Advances in Computational Mathematics, 2008, 29 :135-145
[7]   Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell’s Equations [J].
Zhonghua Qiao ;
Changhui Yao ;
Shanghui Jia .
Journal of Scientific Computing, 2011, 46 :1-19
[8]   Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations [J].
Qiao, Zhonghua ;
Yao, Changhui ;
Jia, Shanghui .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) :1-19
[9]   Two order superconvergence of finite element methods for Sobolev equations [J].
Li Q. ;
Wei H. .
Korean Journal of Computational and Applied Mathematics, 2001, 8 (3) :497-505
[10]   Superconvergence of mixed finite element methods for optimal control problems [J].
Chen, Yanping .
MATHEMATICS OF COMPUTATION, 2008, 77 (263) :1269-1291