New canonical analysis for higher order topologically massive gravity

被引:5
作者
Escalante, Alberto [1 ]
Hernandez Aguilar, Jorge [2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis Luis Rivera Terrazas, Apartado Postal J-48, Puebla 72570, Mexico
[2] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla, Mexico
来源
EUROPEAN PHYSICAL JOURNAL C | 2021年 / 81卷 / 07期
关键词
D O I
10.1140/epjc/s10052-021-09429-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A detailed Gitman-Lyakhovich-Tyutin analysis for higher-order topologically massive gravity is performed. The full structure of the constraints, the counting of physical degrees of freedom, and the Dirac algebra among the constraints are reported. Moreover, our analysis presents a new structure into the constraints and we compare our results with those reported in the literature where a standard Ostrogradski framework was developed.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Bachian gravity in three dimensions [J].
Alkac, Gokhan ;
Tek, Mustafa ;
Tekin, Bayram .
PHYSICAL REVIEW D, 2018, 98 (10)
[2]   CONSTRAINED ANALYSIS OF TOPOLOGICALLY MASSIVE GRAVITY [J].
BARCELOSNETO, J ;
DARGAM, TG .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1995, 67 (04) :701-705
[3]   IS TOPOLOGICALLY MASSIVE GRAVITY RENORMALIZABLE [J].
DESER, S ;
YANG, Z .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (09) :1603-1612
[4]   3-DIMENSIONAL MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
PHYSICAL REVIEW LETTERS, 1982, 48 (15) :975-978
[5]   THE PROBLEM OF NONLOCALITY IN STRING THEORY [J].
ELIEZER, DA ;
WOODARD, RP .
NUCLEAR PHYSICS B, 1989, 325 (02) :389-469
[6]  
Escalante A, CANONICAL FORMALISM
[7]   A PURE DIRAC'S CANONICAL ANALYSIS FOR FOUR-DIMENSIONAL BF THEORIES [J].
Escalante, Alberto ;
Rubalcava-Garcia, I. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (07)
[8]   On relativistic wave equations for particles of arbitrary spin in an electromagnetic field [J].
Fierz, M ;
Pauli, W .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1939, 173 (A953) :0211-0232
[9]   RENORMALIZABLE ASYMPTOTICALLY FREE QUANTUM-THEORY OF GRAVITY [J].
FRADKIN, ES ;
TSEYTLIN, AA .
NUCLEAR PHYSICS B, 1982, 201 (03) :469-491
[10]   Two-dimensional metric and tetrad gravities as constrained second-order systems [J].
Ghalati, R. N. ;
Kiriushcheva, N. ;
Kuzmin, S. V. .
MODERN PHYSICS LETTERS A, 2007, 22 (01) :17-28