Bifurcations analysis of a discrete time S I R epidemic model with nonlinear incidence function

被引:10
作者
George, Reny [1 ,2 ]
Gul, Nadia [3 ]
Zeb, Anwar [4 ]
Avazzadeh, Zakieh [5 ]
Djilali, Salih [6 ]
Rezapour, Shahram [7 ,8 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[2] St Thomas Coll, Dept Math & Comp Sci, Bhilai 49006, Chhattisgarh, India
[3] Shaheed Benazir Bhutto Women Univ, Dept Math, Peshawar 25000, Khyber Pakhtunk, Pakistan
[4] COMSATS Univ Islamabad, Dept Math, Abbottabad 22060, Pakistan
[5] Xian Jiaotong Liverpool Univ, Dept Appl Math, Suzhou 215123, Peoples R China
[6] Hassiba Benbouali Univ, Fac Exact & Comp Sci, Math Dept, Chlef, Algeria
[7] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[8] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Bifurcation; Normal form; Numerical continuation method; One parameter bifurcation; SIR epidemic model; Stability; STABILITY; DYNAMICS;
D O I
10.1016/j.rinp.2022.105580
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a discrete-time SIR epidemic model and investigate the stability of its fixed points, as well as the bifurcations of the one and two parameters. The numerical normal form is used to analyze bifurcations. This model exhibits Neimark-Sacker transcritical, flip, and strong resonance bifurcations. Using the critical coefficients, a scenario is identified for each bifurcation. We verify analytical results using the MATLAB package MatContM, which employs the numerical continuation method.
引用
收藏
页数:8
相关论文
共 23 条
[1]   A novel method for a fractional derivative with non-local and non-singular kernel [J].
Akgul, Ali .
CHAOS SOLITONS & FRACTALS, 2018, 114 :478-482
[2]   SEASONALITY AND PERIOD-DOUBLING BIFURCATIONS IN AN EPIDEMIC MODEL [J].
ARON, JL ;
SCHWARTZ, IB .
JOURNAL OF THEORETICAL BIOLOGY, 1984, 110 (04) :665-679
[3]   Analysis of fractal fractional differential equations [J].
Atangana, Abdon ;
Akgul, Ali ;
Owolabi, Kolade M. .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) :1117-1134
[4]  
Baleanu D, 2020, ADV DIFFER EQU-NY, V2020, DOI 10.1186/s13662-020-02544-w
[5]  
Bjornstad ON, 2002, ECOL MONOGR, V72, P169, DOI 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO
[6]  
2
[7]   Stability and codimension 2 bifurcations of a discrete time SIR model [J].
Eskandari, Zohreh ;
Alidousti, Javad .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (15) :10937-10959
[8]   Numerical methods for two-parameter local bifurcation analysis of maps [J].
Govaerts, W. ;
Ghaziani, R. Khoshsiar ;
Kuznetsov, Yu. A. ;
Meijer, H. G. E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06) :2644-2667
[9]   Stability and bifurcation analysis in a discrete SIR epidemic model [J].
Hu, Zengyun ;
Teng, Zhidong ;
Zhang, Long .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 97 :80-93
[10]   A robust study on 2019-nCOV outbreaks through non-singular derivative [J].
Khan, Muhammad Altaf ;
Ullah, Saif ;
Kumar, Sunil .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02)