An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural Network Accelerator for Object Recognition Applications

被引:45
|
作者
Li, Jixuan [1 ]
Un, Ka-Fai [1 ]
Yu, Wei-Han [1 ]
Mak, Pui-In [1 ]
Martins, Rui P. [1 ]
机构
[1] Univ Macau, Fac Sci & Technol, State Key Lab Analog & Mixed Signal VLSI IME & DE, Macau, Peoples R China
关键词
Frequency modulation; Kernel; Throughput; Parallel processing; Memory management; Field programmable gate arrays; Computational efficiency; Computation efficiency; convolutional neural network (CNN); FPGA; object recognition; reconfigurability; THROUGHPUT; CNN;
D O I
10.1109/TCSII.2021.3095283
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The computational efficiency is the prime concern of a computation-intensive deep convolutional neural network (CNN). In this Brief, we report an FPGA-based computation-efficient reconfigurable CNN accelerator. It innovates in the utilization of a kernel partition technique to substantially reduce the repeated access to the input feature maps and the kernels. As a result, it balances the ability for parallel computing while consuming less system power. Experimental results prove that the proposed CNN accelerator achieves a peak throughput of 220.0 GOP/s with an energy efficiency of 22.9 GOPs/W at 151.4 frames/s for the AlexNet. It is also reconfigurable to process VGG-16 befitting complex object recognition.
引用
收藏
页码:3143 / 3147
页数:5
相关论文
共 50 条
  • [31] Efficient FPGA-Based Convolutional Neural Network Implementation for Edge Computing
    Cuong, Pham-Quoc
    Thinh, Tran Ngoc
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (03) : 479 - 487
  • [32] An Energy-Efficient Convolutional Neural Network Processor Architecture Based on a Systolic Array
    Zhang, Chen
    Wang, Xin'an
    Yong, Shanshan
    Zhang, Yining
    Li, Qiuping
    Wang, Chenyang
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [33] An FPGA-based Accelerator Implementation for Deep Convolutional Neural Networks
    Zhou, Yongmei
    Jiang, Jingfei
    PROCEEDINGS OF 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2015), 2015, : 829 - 832
  • [34] FPGA-based Convolutional Neural Network Accelerator design using High Level Synthesize
    Ghaffari, Sina
    Sharifian, Saeed
    2016 2ND INTERNATIONAL CONFERENCE OF SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2016, : 29 - 34
  • [35] Design framework for an energy-efficient binary convolutional neural network accelerator based on nonvolatile logic
    Suzuki, Daisuke
    Oka, Takahiro
    Tamakoshi, Akira
    Takako, Yasuhiro
    Hanyu, Takahiro
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2021, 12 (04): : 695 - 710
  • [36] An Energy-Efficient FPGA-based Matrix Multiplier
    Tan, Yiyu
    Imamura, Toshiyuki
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2017, : 514 - 517
  • [37] A Flexible and Energy-Efficient Convolutional Neural Network Acceleration With Dedicated ISA and Accelerator
    Chen, Xiaobai
    Yu, Zhiyi
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (07) : 1408 - 1412
  • [38] Low-Latency In Situ Image Analytics With FPGA-Based Quantized Convolutional Neural Network
    Wang, Maolin
    Lee, Kelvin C. M.
    Chung, Bob M. F.
    Bogaraju, Sharatchandra Varma
    Ng, Ho-Cheung
    Wong, Justin S. J.
    Shum, Ho Cheung
    Tsia, Kevin K.
    So, Hayden Kwok-Hay
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (07) : 2853 - 2866
  • [39] A High-Efficiency FPGA-Based Accelerator for Binarized Neural Network
    Guo, Peng
    Ma, Hong
    Chen, Ruizhi
    Wang, Donglin
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2019, 28
  • [40] An FPGA-Based Transformer Accelerator Using Output Block Stationary Dataflow for Object Recognition Applications
    Zhao, Zhongyu
    Cao, Rujian
    Un, Ka-Fai
    Yu, Wei-Han
    Mak, Pui-In
    Martins, Rui P.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (01) : 281 - 285