An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural Network Accelerator for Object Recognition Applications

被引:45
|
作者
Li, Jixuan [1 ]
Un, Ka-Fai [1 ]
Yu, Wei-Han [1 ]
Mak, Pui-In [1 ]
Martins, Rui P. [1 ]
机构
[1] Univ Macau, Fac Sci & Technol, State Key Lab Analog & Mixed Signal VLSI IME & DE, Macau, Peoples R China
关键词
Frequency modulation; Kernel; Throughput; Parallel processing; Memory management; Field programmable gate arrays; Computational efficiency; Computation efficiency; convolutional neural network (CNN); FPGA; object recognition; reconfigurability; THROUGHPUT; CNN;
D O I
10.1109/TCSII.2021.3095283
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The computational efficiency is the prime concern of a computation-intensive deep convolutional neural network (CNN). In this Brief, we report an FPGA-based computation-efficient reconfigurable CNN accelerator. It innovates in the utilization of a kernel partition technique to substantially reduce the repeated access to the input feature maps and the kernels. As a result, it balances the ability for parallel computing while consuming less system power. Experimental results prove that the proposed CNN accelerator achieves a peak throughput of 220.0 GOP/s with an energy efficiency of 22.9 GOPs/W at 151.4 frames/s for the AlexNet. It is also reconfigurable to process VGG-16 befitting complex object recognition.
引用
收藏
页码:3143 / 3147
页数:5
相关论文
共 50 条
  • [1] An FPGA-Based Energy-Efficient Reconfigurable Depthwise Separable Convolution Accelerator for Image Recognition
    Xuan, Lei
    Un, Ka-Fai
    Lam, Chi-Seng
    Martins, Rui P.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (10) : 4003 - 4007
  • [2] An Efficient FPGA-Based Dilated and Transposed Convolutional Neural Network Accelerator
    Wu, Tsung-Hsi
    Shu, Chang
    Liu, Tsung-Te
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (11) : 5178 - 5186
  • [3] An Energy-Efficient FPGA-based Convolutional Neural Network Implementation
    Irmak, Hasan
    Alachiotis, Nikolaos
    Ziener, Daniel
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [4] Energy-Efficient and High-Throughput FPGA-based Accelerator for Convolutional Neural Networks
    Feng, Gan
    Hu, Zuyi
    Chen, Song
    Wu, Feng
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2016, : 624 - 626
  • [5] An FPGA-Based Computation-Efficient Convolutional Neural Network Accelerator
    Archana, V. S.
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [6] An energy-efficient convolutional neural network accelerator for speech classification based on FPGA and quantization
    Wen, Dong
    Jiang, Jingfei
    Dou, Yong
    Xu, Jinwei
    Xiao, Tao
    CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2021, 3 (01) : 4 - 16
  • [7] An energy-efficient convolutional neural network accelerator for speech classification based on FPGA and quantization
    Dong Wen
    Jingfei Jiang
    Yong Dou
    Jinwei Xu
    Tao Xiao
    CCF Transactions on High Performance Computing, 2021, 3 : 4 - 16
  • [8] A Precision-Scalable Energy-Efficient Convolutional Neural Network Accelerator
    Liu, Wenjian
    Lin, Jun
    Wang, Zhongfeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (10) : 3484 - 3497
  • [9] Scalable FPGA-Based Convolutional Neural Network Accelerator for Embedded Systems
    Zhao, Jingyuan
    Yin, Zhendong
    Zhao, Yanlong
    Wu, Mingyang
    Xu, Mingdong
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2019), 2019, : 36 - 40
  • [10] FPGA-Based Implementation of a Real-Time Object Recognition System Using Convolutional Neural Network
    Gilan, Ali Azarmi
    Emad, Mohammad
    Alizadeh, Bijan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (04) : 755 - 759