Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing

被引:285
作者
Lau, Hoi-Kwan [1 ]
Clerk, Aashish A. [1 ]
机构
[1] Univ Chicago, Inst Mol Engn, 5640 South Ellis Ave, Chicago, IL 60637 USA
关键词
EXCEPTIONAL POINTS; STATISTICAL DISTANCE; NON-RECIPROCITY; CAVITY; SHIFT; MICROCAVITY; STATES; MODES; NOISE; LIGHT;
D O I
10.1038/s41467-018-06477-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unconventional properties of non-Hermitian systems, such as the existence of exceptional points, have recently been suggested as a resource for sensing. The impact of noise and utility in quantum regimes however remains unclear. In this work, we analyze the parametric-sensing properties of linear coupled-mode systems that are described by effective non-Hermitian Hamiltonians. Our analysis fully accounts for noise effects in both classical and quantum regimes, and also fully treats a realistic and optimal measurement protocol based on coherent driving and homodyne detection. Focusing on two-mode devices, we derive fundamental bounds on the signal power and signal-to-noise ratio for any such sensor. We use these to demonstrate that enhanced signal power requires gain, but not necessarily any proximity to an exceptional point. Further, when noise is included, we show that non-reciprocity is a powerful resource for sensing: it allows one to exceed the fundamental bounds constraining any conventional, reciprocal sensor.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Directional Amplification with a Josephson Circuit [J].
Abdo, Baleegh ;
Sliwa, Katrina ;
Frunzio, Luigi ;
Devoret, Michel .
PHYSICAL REVIEW X, 2013, 3 (03) :1-8
[2]   Label-free, single-molecule detection with optical microcavities [J].
Armani, Andrea M. ;
Kulkarni, Rajan P. ;
Fraser, Scott E. ;
Flagan, Richard C. ;
Vahala, Kerry J. .
SCIENCE, 2007, 317 (5839) :783-787
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]   A detector of high frequency gravitational waves based on coupled microwave cavities [J].
Ballantini, R ;
Bernard, P ;
Chiaveri, E ;
Chincarini, A ;
Gemme, G ;
Losito, R ;
Parodi, R ;
Picasso, E .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (15) :3505-3522
[5]   Quantum Fidelity for Arbitrary Gaussian States [J].
Banchi, Leonardo ;
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)
[6]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8
[7]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[8]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[9]   Gravitational wave detection using electromagnetic modes in a resonance cavity [J].
Brodin, G ;
Marklund, M .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (05) :L45-L51
[10]   QUANTUM LIMITS ON NOISE IN LINEAR-AMPLIFIERS [J].
CAVES, CM .
PHYSICAL REVIEW D, 1982, 26 (08) :1817-1839