Reconfigurable nanocavity formation in graphene-loaded Si photonic crystal structures

被引:5
作者
Chiba, Hisashi [1 ,2 ]
Notomi, Masaya [1 ,2 ,3 ]
机构
[1] Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
[2] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[3] NTT Corp, Nanophoton Ctr, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
基金
日本学术振兴会;
关键词
ION-GEL; MODULATION; TRANSISTORS; CAVITY;
D O I
10.1364/OE.381608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose and numerically demonstrate that a reconfigurable nanocavity can be created in a graphene-loaded Si photonic crystal waveguide. The cavity formation is caused by the local mode-gap modulation induced by electrostatic gate-tuning of graphene. Although most recent graphene photonic devices are based on a change in the imaginary part of the refractive index, here we make use of a change in the real part of the refractive index for gated graphene. We clarify that nanocavities can be formed in two different cases, red-shifted and blue-shifted tunings. These novel formation mechanisms enable us to create and annihilate a nanocavity in a reconfigurable way by varying the gate voltage, which is promising for novel control in photonic processing. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:37952 / 37963
页数:12
相关论文
共 35 条
[1]  
Bao QL, 2011, NAT PHOTONICS, V5, P411, DOI [10.1038/NPHOTON.2011.102, 10.1038/nphoton.2011.102]
[2]   Ultrafast nonequilibrium carrier dynamics in a single graphene layer [J].
Breusing, M. ;
Kuehn, S. ;
Winzer, T. ;
Malic, E. ;
Milde, F. ;
Severin, N. ;
Rabe, J. P. ;
Ropers, C. ;
Knorr, A. ;
Elsaesser, T. .
PHYSICAL REVIEW B, 2011, 83 (15)
[3]   Controlling inelastic light scattering quantum pathways in graphene [J].
Chen, Chi-Fan ;
Park, Cheol-Hwan ;
Boudouris, Bryan W. ;
Horng, Jason ;
Geng, Baisong ;
Girit, Caglar ;
Zettl, Alex ;
Crommie, Michael F. ;
Segalman, Rachel A. ;
Louie, Steven G. ;
Wang, Feng .
NATURE, 2011, 471 (7340) :617-620
[4]   Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic [J].
Cho, Jeong Ho ;
Lee, Jiyoul ;
Xia, Yu ;
Kim, Bongsoo ;
He, Yiyong ;
Renn, Michael J. ;
Lodge, Timothy P. ;
Frisbie, C. Daniel .
NATURE MATERIALS, 2008, 7 (11) :900-906
[5]   Semiconducting Electronic Property of Graphene Adsorbed on (0001) Surfaces of SiO2 [J].
Cuong, Nguyen Thanh ;
Otani, Minoru ;
Okada, Susumu .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[6]   Athermal Broadband Graphene Optical Modulator with 35 GHz Speed [J].
Dalir, Hamed ;
Xia, Yang ;
Wang, Yuan ;
Zhang, Xiang .
ACS PHOTONICS, 2016, 3 (09) :1564-1568
[7]  
Datta I, 2017, CONF LASER ELECTR
[8]   Optical far-infrared properties of a graphene monolayer and multilayer [J].
Falkovsky, L. A. ;
Pershoguba, S. S. .
PHYSICAL REVIEW B, 2007, 76 (15)
[9]   High-Contrast Electrooptic Modulation of a Photonic Crystal Nanocavity by Electrical Gating of Graphene [J].
Gan, Xuetao ;
Shiue, Ren-Jye ;
Gao, Yuanda ;
Mak, Kin Fai ;
Yao, Xinwen ;
Li, Luozhou ;
Szep, Attila ;
Walker, Dennis, Jr. ;
Hone, James ;
Heinz, Tony F. ;
Englund, Dirk .
NANO LETTERS, 2013, 13 (02) :691-696
[10]   Ultrahigh-quality photonic crystal cavity in GaAs [J].
Herrmann, R ;
Sünner, T ;
Hein, T ;
Löffler, A ;
Kamp, M ;
Forchel, A .
OPTICS LETTERS, 2006, 31 (09) :1229-1231