Percolation in networks of 1-dimensional objects: comparison between Monte Carlo simulations and experimental observations

被引:32
作者
Langley, Daniel P. [1 ,2 ,3 ]
Lagrange, Melanie [1 ]
Ngoc Duy Nguyen [2 ]
Bellet, Daniel [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France
[2] Univ Liege, Dept Phys, CESAM, Q MAT,SPIN, B-4000 Liege, Belgium
[3] Swinburne Univ Technol, Dept Telecommun Elect Robot & Biomed Engn, John St, Hawthorn, Vic 3122, Australia
基金
欧盟地平线“2020”;
关键词
METAL NANOWIRE NETWORKS; TRANSPARENT ELECTRODES; NEXT-GENERATION; SILVER; CONDUCTIVITY; THRESHOLD; SIZE;
D O I
10.1039/c8nh00066b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Planar networks composed of 1-dimensional nanometer scale objects such as nanotubes or nanowires have been attracting growing interest in recent years. In this work we directly compare the percolation threshold of silver nanowire networks to predictions from Monte Carlo simulations, focusing particularly on understanding the impact of real world imperfections on the percolation onset in these systems. This work initially determines the percolation threshold as calculated from an ideal system using Monte Carlo methods. On this foundation we address the effects of perturbations in length, angular anisotropy and radius of curvature of the 1-dimensional objects, in line with those observed experimentally in purposely fabricated samples. This work explores why two-dimensional stick models in the literature currently underestimate the percolation onset in real systems and identifies which of the network's features play the most significant role in that deviation.
引用
收藏
页码:545 / 550
页数:6
相关论文
共 25 条
[1]   COMPUTER STUDY OF THE PERCOLATION-THRESHOLD IN A TWO-DIMENSIONAL ANISOTROPIC SYSTEM OF CONDUCTING STICKS [J].
BALBERG, I ;
BINENBAUM, N .
PHYSICAL REVIEW B, 1983, 28 (07) :3799-3812
[2]   Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite [J].
Coleman, JN ;
Curran, S ;
Dalton, AB ;
Davey, AP ;
McCarthy, B ;
Blau, W ;
Barklie, RC .
PHYSICAL REVIEW B, 1998, 58 (12) :R7492-R7495
[3]   Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors [J].
De, Sukanta ;
King, Paul J. ;
Lyons, Philip E. ;
Khan, Umar ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (12) :7064-7072
[4]   Low electrical percolation threshold of silver and copper nanowires in polystyrene composites [J].
Gelves, Genaro A. ;
Lin, Bin ;
Sundararaj, Uttandaraman ;
Haber, Joel A. .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (18) :2423-2430
[5]   Percolating conduction in finite nanotube networks [J].
Kumar, S ;
Murthy, JY ;
Alam, MA .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[6]   Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing [J].
Lagrange, M. ;
Langley, D. P. ;
Giusti, G. ;
Jimenez, C. ;
Brechet, Y. ;
Bellet, D. .
NANOSCALE, 2015, 7 (41) :17410-17423
[7]   Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells [J].
Lan, Xinzheng ;
Bai, Jing ;
Masala, Silvia ;
Thon, Susanna M. ;
Ren, Yuan ;
Kramer, Illan J. ;
Hoogland, Sjoerd ;
Simchi, Arash ;
Koleilat, Ghada I. ;
Paz-Soldan, Daniel ;
Ning, Zhijun ;
Labelle, Andre J. ;
Kim, Jin Young ;
Jabbour, Ghassan ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2013, 25 (12) :1769-1773
[8]   Metallic nanowire networks: effects of thermal annealing on electrical resistance [J].
Langley, D. P. ;
Lagrange, M. ;
Giusti, G. ;
Jimenez, C. ;
Brechet, Y. ;
Nguyen, N. D. ;
Bellet, D. .
NANOSCALE, 2014, 6 (22) :13535-13543
[9]   Silver nanowire networks: Physical properties and potential integration in solar cells [J].
Langley, D. P. ;
Giusti, G. ;
Lagrange, M. ;
Collins, R. ;
Jimenez, C. ;
Brechet, Y. ;
Bellet, D. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 125 :318-324
[10]  
Langley D. P., 2014, THESIS