Uniqueness of weak solutions in critical space of the 3-D time-dependent Ginzburg-Landau equations for superconductivity

被引:16
作者
Fan, Jishan [1 ,2 ,3 ]
Gao, Hongjun [1 ,2 ]
机构
[1] Nanjing Normal Univ, Inst Math, Nanjing 210097, Peoples R China
[2] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
[3] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
关键词
Uniqueness; Ginzburg-Landau equations; superconductivity; Coulomb gauge; Lorentz space; WELL-POSEDNESS; MODEL;
D O I
10.1002/mana.200710083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the uniqueness of weak solutions of the 3-D time-dependent Ginzburg-Landau equations for superconductivity with initial data (psi(0), A(0)) is an element of L-2 under the hypothesis that (psi, A) is an element of L-s (0,T; L-r,L-infinity) x L-(s) over bar(0,T; L-(r) over bar,L-infinity) with Coulomb gauge for any (r, s) and ((r) over bar,(s) over bar) satisfying 2/s + 3/r = 1, 2/(s) over bar + 3/(r) over bar = 1, (s) over bar >= 2s/s-2, (r) over bar >= 2r/r-2 and 3 < r <= 6, 3 < (r) over bar <= infinity. Here L-r,L-infinity equivalent to L-w(r) is the Lorentz space. As an application, we prove a uniqueness result with periodic boundary condition when psi(0) is an element of L-25/7, A(0) is an element of L-3. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1134 / 1143
页数:10
相关论文
共 17 条
[1]   Global classical solutions to a non-isothermal dynamical Ginzburg-Landau model in superconductivity [J].
Chen, ZM ;
Hoffmann, KH .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (9-10) :901-920
[2]   Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model [J].
Chen, ZM ;
Elliot, CM ;
Qi, T .
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (01) :25-50
[3]   ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
CHEN, ZM ;
HOFFMANN, KH ;
LIANG, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) :855-875
[4]   Local theory in critical spaces for compressible viscous and heat-conductive gases [J].
Danchin, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) :1183-1233
[5]  
Du Q, 1994, APPL ANAL, V521, P1
[6]   Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity [J].
Fan, JS ;
Jiang, S .
APPLIED MATHEMATICS LETTERS, 2003, 16 (03) :435-440
[7]   A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations [J].
Kim, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) :1417-1434
[8]   Well-posedness for the Navier-Stokes equations [J].
Koch, H ;
Tataru, D .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :22-35
[9]   Exterior problem for the stationary Navier-Stokes equations in the Lorentz space [J].
Kozono, H ;
Yamazaki, M .
MATHEMATISCHE ANNALEN, 1998, 310 (02) :279-305
[10]   THE REGULARITY OF SOLUTIONS FOR THE CURL BOUNDARY-PROBLEMS AND GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
LIANG, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (04) :529-542