Large deviations for stochastic heat equation with rough dependence in space

被引:8
作者
Hu, Yaozhong [1 ]
Nualart, David [1 ]
Zhang, Tusheng [2 ]
机构
[1] Univ Kansas, Dept Math, 405 Snow Hall, Lawrence, KS 66045 USA
[2] Univ Manchester, Sch Math, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
美国国家科学基金会;
关键词
fractional Brownian motion; large deviations; stochastic heat equation;
D O I
10.3150/16-BEJ880
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we establish a large deviation principle for the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise which is white in time and which has the covariance of a fractional Brownian motion with Hurst parameter H is an element of (1/4,1/2) in the space variable.
引用
收藏
页码:354 / 385
页数:32
相关论文
共 17 条
[1]  
[Anonymous], ELECT J PROBAB
[2]   SPDEs with affine multiplicative fractional noise in space with index 1/4 < H < 1/2 [J].
Balan, Raluca M. ;
Jolis, Maria ;
Quer-Sardanyons, Lluis .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-36
[3]  
Budhiraja A., 2000, PROBAB MATH STAT-POL, V20, P139
[4]   Large deviations for infinite dimensional stochastic dynamical systems [J].
Budhiraja, Amarjit ;
Dupuis, Paul ;
Maroulas, Vasileios .
ANNALS OF PROBABILITY, 2008, 36 (04) :1390-1420
[5]   Uniform large deviations for parabolic SPDEs and applications [J].
Chenal, F ;
Millet, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 72 (02) :161-186
[6]   Stochastic 2D Hydrodynamical Type Systems: Well Posedness and Large Deviations [J].
Chueshov, Igor ;
Millet, Annie .
APPLIED MATHEMATICS AND OPTIMIZATION, 2010, 61 (03) :379-420
[7]  
Da Prato G., 2014, STOCHASTIC EQUATIONS, P152, DOI [10.1017/CBO9780511666223, 10.1017/CBO9781107295513]
[8]   Stochastic integrals for spde's: A comparison [J].
Dalang, Robert C. ;
Quer-Sardanyons, Lluis .
EXPOSITIONES MATHEMATICAE, 2011, 29 (01) :67-109
[9]  
Dalang Robert C., 1999, ELECTRON J PROBAB, V4, P29, DOI [10.1214/EJP.v4-43, DOI 10.1214/EJP.V4-43]
[10]  
Dupuis P., 1997, A Weak Convergence Approach to the Theory of Large Deviations, DOI [10.1002/9781118165904, DOI 10.1002/9781118165904]