Three-dimensional Fe3O4/N-graphene sponge as an efficient organosulfide host for high-performance lithium-organosulfur batteries

被引:124
作者
He, Jiarui [1 ,2 ]
Bhargav, Amruth [1 ,2 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
Lithium-organosulfur batteries; Polar materials; Graphene; Organosulfur host materials; Electrochemistry; HIGH-CAPACITY CATHODE; SULFUR BATTERIES; FREESTANDING CATHODE; POLYSULFIDES; ARCHITECTURE; ELECTRODE; PROGRESS; BINDER;
D O I
10.1016/j.ensm.2019.05.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapid capacity decay and unclear mechanism for the capacity fade limit the practical application of lithium-organosulfur batteries. Herein, we employ dimethyl trisulfide (DMTS) as a model compound to investigate the capacity fading mechanism and propose a solution to improve its cycling stability. Our results reveal that both DMTS and its discharge products (e.g., LiSCH3, LiSSCH3) are soluble in the electrolyte, leading to severe active material migration and loss, which becomes the predominant capacity fading mechanism. A three-dimensional nitrogen-doped graphene sponge decorated with Fe3O4 nanoparticles (3DFNG) is designed as a host for DMTS, which effectively confine the active material, enabling a specific capacity of 822 mA h g(-1) at C/10 rate and good cycling stability for 500 cycles with a capacity decay of as low as 0.09% per cycle. This work is expected to open up a promising direction to realize highly efficient hosts for lithium-organosulfur batteries.
引用
收藏
页码:88 / 94
页数:7
相关论文
共 50 条
[1]   A Class of Organopolysulfides As Liquid Cathode Materials for High Energy-Density Lithium Batteries [J].
Bhargav, Amruth ;
Bell, Michaela Elaine ;
Karty, Jonathan ;
Cui, Yi ;
Fu, Yongzhu .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (25) :21084-21090
[2]   The unique chemistry of thiuram polysulfides enables energy dense lithium batteries [J].
Bhargav, Amruth ;
Ma, Ying ;
Shashikala, Kollur ;
Cui, Yi ;
Losovyj, Yaroslav ;
Fu, Yongzhu .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (47) :25005-25013
[3]   Superior Performance of a Lithium-Sulfur Battery Enabled by a Dimethyl Trisulfide Containing Electrolyte [J].
Chen, Shuru ;
Wang, Daiwei ;
Zhao, Yuming ;
Wang, Donghai .
SMALL METHODS, 2018, 2 (06)
[4]   Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries [J].
Chen, Shuru ;
Dai, Fang ;
Gordin, Mikhail L. ;
Yu, Zhaoxin ;
Gao, Yue ;
Song, Jiangxuan ;
Wang, Donghai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (13) :4231-4235
[5]   Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer [J].
Chen, Wansong ;
Ouyang, Jiang ;
Liu, Hong ;
Chen, Min ;
Zeng, Ke ;
Sheng, Jianping ;
Liu, Zhenjun ;
Han, Yajing ;
Wang, Liqiang ;
Li, Juan ;
Deng, Liu ;
Liu, You-Nian ;
Guo, Shaojun .
ADVANCED MATERIALS, 2017, 29 (05)
[6]   Atomic Interlamellar Ion Path in High Sulfur Content Lithium-Montmorillonite Host Enables High-Rate and Stable Lithium-Sulfur Battery [J].
Chen, Wei ;
Lei, Tianyu ;
Lv, Weiqiang ;
Hu, Yin ;
Yan, Yichao ;
Jiao, Yu ;
He, Weidong ;
Li, Zhenghan ;
Yan, Chenglin ;
Xiong, Jie .
ADVANCED MATERIALS, 2018, 30 (40)
[7]   A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High-Performance Sulfur Electrodes in Lithium-Sulfur Battery [J].
Chen, Wei ;
Lei, Tianyu ;
Qian, Tao ;
Lv, Weiqiang ;
He, Weidong ;
Wu, Chunyang ;
Liu, Xuejun ;
Liu, Jie ;
Chen, Bo ;
Yan, Chenglin ;
Xiong, Jie .
ADVANCED ENERGY MATERIALS, 2018, 8 (12)
[8]   Honeycomb-Like Spherical Cathode Host Constructed from Hollow Metallic and Polar Co9S8 Tubules for Advanced Lithium-Sulfur Batteries [J].
Dai, Chunlong ;
Lim, Jin-Myoung ;
Wang, Minqiang ;
Hu, Linyu ;
Chen, Yuming ;
Chen, Zhaoyang ;
Chen, Hao ;
Bao, Shu-Juan ;
Shen, Bolei ;
Li, Yi ;
Henkelman, Graeme ;
Xu, Maowen .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (14)
[9]   High-Performance and Low-Temperature Lithium-Sulfur Batteries: Synergism of Thermodynamic and Kinetic Regulation [J].
Fan, Chao-Ying ;
Zheng, Yan-Ping ;
Zhang, Xiao-Hua ;
Shi, Yan-Hong ;
Liu, Si-Yu ;
Wang, Han-Chi ;
Wu, Xing-Long ;
Sun, Hai-Zhu ;
Zhang, Jing-Ping .
ADVANCED ENERGY MATERIALS, 2018, 8 (18)
[10]   Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes [J].
Fu, Yongzhu ;
Su, Yu-Sheng ;
Manthiram, Arumugam .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (27) :6930-6935