On the stability of equilibria to weakly coupled parabolic systems in unbounded domains

被引:5
作者
Escher, J [1 ]
Yin, ZY
机构
[1] Univ Hannover, Inst Appl Math, D-30167 Hannover, Germany
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
stable equilibria; parabolic systems; unbounded domains;
D O I
10.1016/j.na.2004.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate weakly coupled semilinear parabolic systems in unbounded domains of R-2 or R-3 with general nonlinearities. We present several sufficient conditions on the nonlinearities which ensure the stability of the zero solution with respect to H-2-perturbations. In addition, various examples are discussed to illustrate the scope of application of our results. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1065 / 1084
页数:20
相关论文
共 31 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[3]  
Amann H., 1995, Abstract linear theory, volume89 of Monographs in Mathematics, VI
[4]  
[Anonymous], APPL MATH SCI
[5]  
[Anonymous], LECT NOTES MATH
[6]   Critical blowup exponents for a system of reaction- diffusion equations with absorption [J].
Bedjaoui, N ;
Souplet, P .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (02) :197-210
[7]   ON THE SPECTRAL THEORY OF ELLIPTIC DIFFERENTIAL OPERATORS .1. [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1961, 142 (01) :22-130
[8]   Global solutions for quasilinear parabolic problems [J].
Constantin, A ;
Escher, J .
JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (01) :97-111
[9]  
CONSTANTIN A, IN PRESS NODEA
[10]   Stable equilibria to parabolic systems in unbounded domains [J].
Escher, J ;
Yin, ZY .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 (02) :243-255