Affine cones over smooth cubic surfaces

被引:33
作者
Cheltsov, Ivan [1 ,2 ]
Park, Jihun [3 ,4 ]
Won, Joonyeong [5 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Natl Res Univ, Higher Sch Econ, Lab Algebra Geometry, 7 Vavilova St, Moscow 117312, Russia
[3] Inst for Basic Sci Korea, Ctr Geometry & Phys, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[4] POSTECH, Dept Math, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[5] KIAS, 85 Hoegiro, Seoul 02455, South Korea
关键词
Affine cone; alpha-invariant; anticanonical divisor; cylinder; del Pezzo surface; G(a)-action; log canonical singularity; LOG-CANONICAL THRESHOLDS; KAHLER-EINSTEIN METRICS; DEL PEZZO SURFACES; COMPLEX-SURFACES; EQUATIONS;
D O I
10.4171/JEMS/622
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that affine cones over smooth cubic surfaces do not admit non-trivial G(a)-actions.
引用
收藏
页码:1537 / 1564
页数:28
相关论文
共 40 条
[1]  
Ambro Florin., 2006, P S MULTIPLIER IDEAL, V1550, P121
[2]  
[Anonymous], ERGEB MATH GRENZGEB
[3]  
[Anonymous], 1998, Cambridge Tracts in Mathematics
[4]  
[Anonymous], 2012, Metric and differential geometry
[5]  
[Anonymous], 1873, Crelles Journal, DOI DOI 10.1515/CRLL.1873.75.292
[6]   ON ISOLATED RATIONAL SINGULARITIES OF SURFACES [J].
ARTIN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) :129-&
[7]   A NON-TRIANGULAR ACTION OF GA ON A3 [J].
BASS, H .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 33 (01) :1-5
[8]   A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics [J].
Berman, Robert J. .
ADVANCES IN MATHEMATICS, 2013, 248 :1254-1297
[9]  
Brieskorn E., 1967, Inventiones Mathematicae, V4, P336, DOI 10.1007/BF01425318
[10]   Total log canonical thresholds and generalized Eckardt points [J].
Cheltsov, IA ;
Park, JH .
SBORNIK MATHEMATICS, 2002, 193 (5-6) :779-789