Constraints on the flux of ultra-high energy neutrinos from Westerbork Synthesis Radio Telescope observations

被引:33
作者
Buitink, S. [1 ,2 ]
Scholten, O. [3 ]
Bacelar, J. [4 ]
Braun, R. [5 ]
de Bruyn, A. G. [6 ,7 ]
Falcke, H. [2 ,7 ]
Singh, K. [3 ]
Stappers, B. [8 ]
Strom, R. G. [7 ,9 ]
al Yahyaoui, R. [3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands
[3] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands
[4] ASML Netherlands BV, NL-5500 AH Veldhoven, Netherlands
[5] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia
[6] Univ Groningen, Kapteyn Inst, NL-9747 AA Groningen, Netherlands
[7] ASTRON, NL-7990 AA Dwingeloo, Netherlands
[8] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[9] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands
关键词
astroparticle physics; neutrinos; methods: data analysis; methods: observational; radiation mechanisms: non-thermal; COSMIC-RAYS; EMISSION; SHOWERS; PULSES; CHARGE; LIMITS;
D O I
10.1051/0004-6361/201014104
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE neutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth's ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Correlation of the highest-energy cosmic rays with nearby extragalactic objects [J].
Abraham, J. ;
Abreu, P. ;
Aglietta, M. ;
Aguirre, C. ;
Allard, D. ;
Allekotte, I. ;
Allen, J. ;
Allison, P. ;
Alvarez, C. ;
Alvarez-Muniz, J. ;
Ambrosio, M. ;
Anchordoqui, L. ;
Andringa, S. ;
Anzalone, A. ;
Aramo, C. ;
Argiro, S. ;
Arisaka, K. ;
Armengaud, E. ;
Arneodo, F. ;
Arqueros, F. ;
Asch, T. ;
Asorey, H. ;
Assis, P. ;
Atulugama, B. S. ;
Aublin, J. ;
Ave, M. ;
Avila, G. ;
Baecker, T. ;
Badagnani, D. ;
Barbosa, A. F. ;
Barnhill, D. ;
Barroso, S. L. C. ;
Bauleo, P. ;
Beatty, J. ;
Beau, T. ;
Becker, B. R. ;
Becker, K. H. ;
Bellido, J. A. ;
BenZvi, S. ;
Berat, C. ;
Bergmann, T. ;
Bernardini, P. ;
Bertou, X. ;
Biermann, P. L. ;
Billoir, P. ;
Blanch-Bigas, O. ;
Blanco, F. ;
Blasi, P. ;
Bleve, C. ;
Bluemer, H. .
SCIENCE, 2007, 318 (5852) :938-943
[2]   Observation of the suppression of the flux of cosmic rays above 4x1019 eV [J].
Abraham, J. ;
Abreu, P. ;
Aglietta, M. ;
Aguirre, C. ;
Allard, D. ;
Allekotte, I. ;
Allen, J. ;
Allison, P. ;
Alvarez-Muniz, J. ;
Ambrosio, M. ;
Anchordoqui, L. ;
Andringa, S. ;
Anzalone, A. ;
Aramo, C. ;
Argiro, S. ;
Arisaka, K. ;
Armengaud, E. ;
Arneodo, F. ;
Arqueros, F. ;
Asch, T. ;
Asorey, H. ;
Assis, P. ;
Atulugama, B. S. ;
Aublin, J. ;
Ave, M. ;
Avila, G. ;
Backer, T. ;
Badagnani, D. ;
Barbosa, A. F. ;
Barnhill, D. ;
Barroso, S. L. C. ;
Baughman, B. ;
Bauleo, P. ;
Beatty, J. J. ;
Beau, T. ;
Becker, B. R. ;
Becker, K. H. ;
Bellido, J. A. ;
BenZvi, S. ;
Berat, C. ;
Bergmann, T. ;
Bernardini, P. ;
Bertou, X. ;
Biermann, P. L. ;
Billoir, P. ;
Blanch-Bigas, O. ;
Blanco, F. ;
Blasi, P. ;
Bleve, C. ;
Mer, H. Blu .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[3]  
Aguilar-Arevalo A., 2001, PHYS REV D, V64
[4]   The LPM effect for EeV hadronic showers in ice: implications for radio detection of neutrinos [J].
Alvarez-Muniz, J ;
Zas, E .
PHYSICS LETTERS B, 1998, 434 (3-4) :396-406
[5]   Cherenkov radio pulses from EeV neutrino interactions: the LPM effect [J].
AlvarezMuniz, J ;
Zas, E .
PHYSICS LETTERS B, 1997, 411 (1-2) :218-224
[6]  
ASKARYAN GA, 1962, SOV PHYS JETP-USSR, V14, P441
[7]  
ASLANIDES E, 1999, ARXIVASTROPH9907432
[8]   Constraints on cosmic neutrino fluxes from the Antarctic Impulsive Transient Antenna experiment [J].
Barwick, SW ;
Beatty, JJ ;
Besson, DZ ;
Binns, WR ;
Cai, B ;
Clem, JM ;
Connolly, A ;
Cowen, DF ;
Dowkontt, PF ;
DuVernois, MA ;
Evenson, PA ;
Goldstein, D ;
Gorham, PW ;
Hebert, CL ;
Israel, MH ;
Learned, JG ;
Liewer, KM ;
Link, JT ;
Matsuno, S ;
Miocinovic, P ;
Nam, J ;
Naudet, CJ ;
Nichol, R ;
Palladino, K ;
Rosen, M ;
Saltzberg, D ;
Seckel, D ;
Silvestri, A ;
Stokes, BT ;
Varner, GS ;
Wu, F .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[9]   Limits on the flux of ultrahigh-energy neutrinos from radio astronomical observations [J].
Beresnyak, AR ;
Dagkesamanskii, RD ;
Zheleznykh, IM ;
Kovalenko, AV ;
Oreshko, VV .
ASTRONOMY REPORTS, 2005, 49 (02) :127-133
[10]   Results from the antarctic Muon and neutrino detector array [J].
Cowen, DF ;
Ahrens, J ;
Bai, X ;
Barwick, SW ;
Becka, T ;
Becker, KH ;
Bernardini, E ;
Bertrand, D ;
Binon, F ;
Biron, A ;
Böser, S ;
Botner, O ;
Bouhali, O ;
Burgess, T ;
Carius, S ;
Castermans, T ;
Chen, A ;
Chirkin, D ;
Conrad, J ;
Cooley, J ;
Cowen, DF ;
Davour, A ;
De Clercq, C ;
DeYoung, T ;
Desiati, P ;
Dewulf, JP ;
Doksus, P ;
Ekström, P ;
Feser, T ;
Gaisser, TK ;
Gaug, M ;
Gerhardt, L ;
Goldschmidt, A ;
Hallgren, A ;
Halzen, F ;
Hanson, K ;
Hardtke, R ;
Hauschildt, T ;
Hellwig, M ;
Herquet, P ;
Hill, GC ;
Hulth, PO ;
Hundertmark, S ;
Jacobsen, J ;
Karle, A ;
Koci, B ;
Köpke, L ;
Kuehn, K ;
Kowalski, M ;
Lamoureux, JI .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 118 :371-379