Nonoscillatory solutions for first-order neutral dynamic equations with continuously distributed delay on time scales

被引:2
作者
Chen, Zhanhe [1 ]
Lv, Jingjiang [1 ]
He, Xuanli [1 ]
Li, Ting [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
基金
中国国家自然科学基金;
关键词
Neutral dynamic equation; Nonoscillatory solution; Time scale; OSCILLATION; EXISTENCE;
D O I
10.1186/s13662-019-2015-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of nonoscillatory solutions to the neutral dynamic equation on a time scale T. Some examples are given to illustrate the main results.
引用
收藏
页数:8
相关论文
共 13 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
[3]   Oscillation criteria for second-order nonlinear neutral dynamic equations with distributed deviating arguments on time scales [J].
Candan, Tuncay .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[4]  
Chen Y., 1992, FUNKC EKVACIOJ-SER I, V35, P557
[5]   EXISTENCE OF NONOSCILLATORY SOLUTIONS TO SECOND-ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES [J].
Gao, Jin ;
Wang, Qiru .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) :1521-1535
[6]   New oscillation criteria for third-order neutral differential equations with continuously distributed delay [J].
Gao, Shaoqin ;
Chen, Zimeng ;
Shi, Wenying .
APPLIED MATHEMATICS LETTERS, 2018, 77 :64-71
[7]   Nonoscillation of all solutions of a higher order nonlinear delay dynamic equation on time scales [J].
Graef, John R. ;
Hill, Mary .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) :1693-1703
[8]  
HASSAN T. S., 2014, Tatra Mt. Math. Publ., V61, P141
[9]   Oscillation for neutral dynamic functional equations on time scales [J].
Mathsen, RM ;
Wang, QR ;
Wu, HW .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (07) :651-659
[10]   On nonoscillatory solutions tending to zero of third-order nonlinear dynamic equations on time scales [J].
Qiu, Yang-Cong .
ADVANCES IN DIFFERENCE EQUATIONS, 2016, :1-15