Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with pluronic F127

被引:260
作者
Wang, YQ [1 ]
Wang, T [1 ]
Su, YL [1 ]
Peng, FB [1 ]
Wu, H [1 ]
Jiang, ZY [1 ]
机构
[1] Tianjin Univ, Key Lab Green Chem Technol, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
关键词
D O I
10.1021/la052052d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrophilic modification of ultrafiltration membranes was achieved through blending of Pluronic F127 with poly(ether sulfone) (PES). The chemical composition and morphology changes of the membrane surface were confirmed by water contact angle, X-ray photoelectron spectroscopy, scanning electron microscopy, and protein adsorption measurements. The decreased static water contact angle with an increase in the Pluronic F127 content indicated an increase of surface hydrophilicity. XPS analysis revealed enrichment of PEO segments of Pluronic F127 at the membrane surface. The apparent protein adsorption amount decreased significantly from 56.2 to 0 mu g/cm(2) when the Pluronic F127 content varied from 0% to 10.5%, which indicated that the blend membrane had an excellent ability to resist protein adsorption. The ultrafiltration experiments revealed that the Pluronic F127 content had little influence on the protein rejection ratio and pure water flux. Most importantly, at a high Pluronic F127 content membrane fouling, especially irreversible fouling, has been remarkably reduced. The flux recoveries of blend membranes reached as high as 90% after periodic cleaning in three cycles.
引用
收藏
页码:11856 / 11862
页数:7
相关论文
共 49 条
[1]  
AKON H, 2003, BIOMATERIALS, V24, P3235
[2]   PLURONIC-P105 PEO-PPO-PEO BLOCK-COPOLYMER IN AQUEOUS UREA SOLUTIONS - MICELLE FORMATION, STRUCTURE, AND MICROENVIRONMENT [J].
ALEXANDRIDIS, P ;
ATHANASSIOU, V ;
HATTON, TA .
LANGMUIR, 1995, 11 (07) :2442-2450
[3]   MICELLIZATION OF POLY(ETHYLENE OXIDE)-POLY(PROPYLENE OXIDE)-POLY(ETHYLENE OXIDE) TRIBLOCK COPOLYMERS IN AQUEOUS-SOLUTIONS - THERMODYNAMICS OF COPOLYMER ASSOCIATION [J].
ALEXANDRIDIS, P ;
HOLZWARTH, JF ;
HATTON, TA .
MACROMOLECULES, 1994, 27 (09) :2414-2425
[4]   POLY(ETHYLENE OXIDE)-POLY(PROPYLENE OXIDE)-POLY(ETHYLENE OXIDE) BLOCK-COPOLYMER SURFACTANTS IN AQUEOUS-SOLUTIONS AND AT INTERFACES - THERMODYNAMICS, STRUCTURE, DYNAMICS, AND MODELING [J].
ALEXANDRIDIS, P ;
HATTON, TA .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 96 (1-2) :1-46
[5]   PREVENTION OF PROTEIN ADSORPTION AND PLATELET-ADHESION ON SURFACES BY PEO PPO PEO TRIBLOCK COPOLYMERS [J].
AMIJI, M ;
PARK, K .
BIOMATERIALS, 1992, 13 (10) :682-692
[6]  
BESSELING NAM, 1997, LANGMUIR, V13, P2109
[7]  
CHRISTINA FL, 2000, BIOMATERIALS, V21, P307
[8]  
ERWIN AV, 1998, ADV COLLOID INTERFAC, V74, P69
[9]   GRAFTING OF POLYURETHANE SURFACES WITH POLY(ETHYLENE GLYCOL) [J].
FREIJLARSSON, C ;
WESSLEN, B .
JOURNAL OF APPLIED POLYMER SCIENCE, 1993, 50 (02) :345-352
[10]   Polymer brushes that resist adsorption of model proteins: Design parameters [J].
Halperin, A .
LANGMUIR, 1999, 15 (07) :2525-2533