Eigenvalues of Hermite and Laguerre ensembles: large beta asymptotics

被引:48
作者
Dumitriu, L [1 ]
Edelman, A
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2005年 / 41卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.anihpb.2004.11.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we examine the zero and first order eigenvalue fluctuations for the beta-Hermite and beta-Laguerre ensembles, using tridiagonal matrix models, in the limit as beta -> infinity. We prove that the fluctuations are described by multivariate Gaussians of covariance O(1/beta), centered at the roots of a corresponding Hermite (Lagueffe) polynomial. The covafiance matrix itself is expressed as combinations of Hermite or Laguerre polynomials respectively. We show that the approximations are of real value even for small beta; we can use them to approximate the true functions even for the traditional beta = 1, 2, 4 values. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:1083 / 1099
页数:17
相关论文
共 14 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   The Calogero-Sutherland model and generalized classical polynomials [J].
Baker, TH ;
Forrester, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :175-216
[3]  
Demmel JW., 1997, APPL NUMERICAL LINEA
[4]   Patterns in eigenvalues: The 70th Josiah Willard Gibbs Lecture [J].
Diaconis, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 40 (02) :155-178
[5]   Matrix models for beta ensembles [J].
Dumitriu, I ;
Edelman, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5830-5847
[6]  
DUMITRIU I, 2004, MOPS MULTIVARIATE OR
[7]   Shape fluctuations and random matrices [J].
Johansson, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (02) :437-476
[8]   On fluctuations of eigenvalues of random hermitian matrices [J].
Johansson, K .
DUKE MATHEMATICAL JOURNAL, 1998, 91 (01) :151-204
[9]   On the distribution of the largest eigenvalue in principal components analysis [J].
Johnstone, IM .
ANNALS OF STATISTICS, 2001, 29 (02) :295-327
[10]  
Mehta M L., 1991, Random Matrices