Poisson-Dirichlet statistics for the extremes of the two-dimensional discrete Gaussian free field

被引:18
作者
Arguin, Louis-Pierre [1 ,2 ,3 ]
Zindy, Olivier [4 ]
机构
[1] Univ Montreal, Montreal, PQ H3C 3J7, Canada
[2] CUNY Bernard M Baruch Coll, New York, NY 10010 USA
[3] CUNY, Grad Ctr, New York, NY 10016 USA
[4] Univ Paris 06, F-75252 Paris 05, France
关键词
Gaussian free field; Gibbs measure; Poisson-Dirichlet variable; Spin glasses; MULTIPLICATIVE CHAOS; MAXIMUM; MODELS;
D O I
10.1214/EJP.v20-3077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a previous paper, the authors introduced an approach to prove that the statistics of the extremes of a log-correlated Gaussian field converge to a Poisson-Dirichlet variable at the level of the Gibbs measure at low temperature and under suitable test functions. The method is based on showing that the model admits a one-step replica symmetry breaking in spin glass terminology. This implies Poisson-Dirichlet statistics by general spin glass arguments. In this note, this approach is used to prove Poisson-Dirichlet statistics for the two-dimensional discrete Gaussian free field, where boundary effects demand a more delicate analysis.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 26 条
[1]   On the stability of the quenched state in mean-field spin-glass models [J].
Aizenman, M ;
Contucci, P .
JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (5-6) :765-783
[2]  
[Anonymous], 1991, ERGEBNISSE MATH IHRE
[3]   A dynamical characterization of Poisson-Dirichlet distributions [J].
Arguin, Louis-Pierre .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :283-290
[4]   POISSON-DIRICHLET STATISTICS FOR THE EXTREMES OF A LOG-CORRELATED GAUSSIAN FIELD [J].
Arguin, Louis-Pierre ;
Zindy, Olivier .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (04) :1446-1481
[5]   Random overlap structures: properties and applications to spin glasses [J].
Arguin, Louis-Pierre ;
Chatterjee, Sourav .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (1-2) :375-413
[6]   Log-infinitely divisible multifractal processes [J].
Bacry, E ;
Muzy, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :449-475
[7]  
Biskup M, 2013, ARXIV13062602
[8]  
Bolthausen E, 2001, ANN PROBAB, V29, P1670
[9]  
Bolthausen Erwin, 2002, DMV SEMINAR
[10]   Derrida's Generalised Random Energy models 1: models with finitely many hierarchies [J].
Bovier, A ;
Kurkova, I .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (04) :439-480