Vertex vulnerability parameters of Kronecker products of complete graphs

被引:41
作者
Mamut, Aygul [1 ]
Vumar, Elkin [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
combinatorial problems; Kronecker product; cut set; vertex vulnerability parameters;
D O I
10.1016/j.ipl.2007.12.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G(1) and G(2) be two graphs. The Kronecker product G(1) x G(2) of G(1) and G(2) has vertex set V(G(1) x G(2)) = V(G(1)) x V(G(2)) and edge set E(G(1) x G(2)) = {(u(1), v(1)(u(2), v(2)): u(1) u(2) is an element of E(G(1)) and v(1) v(2) is an element of E(G(2))}. In this paper, we determine some vertex vulnerability parameters of the Kronecker product of complete graphs K-m x K-n for n >= m >= 2 and n >= 3. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 262
页数:5
相关论文
共 23 条
[1]   Independent sets in tensor graph powers [J].
Alon, Noga ;
Lubetzky, Eyal .
JOURNAL OF GRAPH THEORY, 2007, 54 (01) :73-87
[2]  
[Anonymous], PRODUCT GRAPHS STRUC
[3]  
Arika T., 2002, ELECT COMMUNICATIO 3, V85
[4]  
Asmerom GA, 1998, DISCRETE MATH, V182, P13
[5]   A SURVEY OF INTEGRITY [J].
BAGGA, KS ;
BEINEKE, LW ;
GODDARD, WD ;
LIPMAN, MJ ;
PIPPERT, RE .
DISCRETE APPLIED MATHEMATICS, 1992, 37-8 :13-28
[6]   EDGE-INTEGRITY - A SURVEY [J].
BAGGA, KS ;
BEINEKE, LW ;
LIPMAN, MJ ;
PIPPERT, RE .
DISCRETE MATHEMATICS, 1994, 124 (1-3) :3-12
[7]   On Hamilton cycle decompositions of the tensor product of complete graphs [J].
Balakrishnan, R ;
Bermond, JC ;
Paulraja, P ;
Yu, ML .
DISCRETE MATHEMATICS, 2003, 268 (1-3) :49-58
[8]  
Barefoot C., 1987, J Comb Math Comb Comput, V1, P12
[9]   Hypercubes as direct products [J].
Bresar, B ;
Imrich, W ;
Klavzar, S ;
Zmazek, B .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (04) :778-786
[10]  
Choudum SA, 1999, NETWORKS, V34, P192, DOI 10.1002/(SICI)1097-0037(199910)34:3<192::AID-NET3>3.0.CO