Dynamics of ion transport and electric double layer in single conical nanopores

被引:19
作者
Wang, Dengchao [1 ,2 ]
Wang, Gangli [1 ]
机构
[1] Georgia State Univ, Dept Chem, Atlanta, GA 30302 USA
[2] CUNY Queens Coll, Dept Chem & Biochem, Flushing, NY 11367 USA
关键词
Nanopore; Ionic transport hysteresis; Memory effect; Concentration polarization; Finite element simulation; CURRENT RECTIFICATION; DNA TRANSLOCATION; CONCENTRATION-GRADIENT; SYNTHETIC NANOPORES; ALPHA-HEMOLYSIN; NANOTUBES; MOLECULES; NANOPIPETTES; INVERSION; MEMBRANE;
D O I
10.1016/j.jelechem.2016.05.018
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Structurally defined nanopores have received great attention in the past decades in part due to the novel mass transport phenomena resolved at such nanoscale solid-liquid interfaces. New capabilities and/or better efficiency are envisioned in molecular sensing, energy storage and conversion, nanofluidics, and membrane transport. This review will focus on the fundamental mass transport processes confined by asymmetric nanoscale structures particularly in conical nanopores. The fabrication of different nanopore devices and the double layer theory are briefly introduced first as background. The nonlinear and dynamic mass transport processes, including ionic current rectification, dynamic concentration polarization, memory effects and capacitive charging/discharging processes are then reviewed. The fundamental understanding and quantification of dynamic transport features offer new physical insights in the nanoscale mass transport processes and has significant implications in related electroanalytical and other applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 82 条
[1]   Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores [J].
Ai, Ye ;
Zhang, Mingkan ;
Joo, Sang W. ;
Cheney, Marcos A. ;
Qian, Shizhi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (09) :3883-3890
[2]   Energy behaviour for DNA translocation through graphene nanopores [J].
Alshehri, Mansoor H. ;
Cox, Barry J. ;
Hill, James M. .
JOURNAL OF THEORETICAL BIOLOGY, 2015, 387 :68-75
[3]   Current-Induced Membrane Discharge [J].
Andersen, M. B. ;
van Soestbergen, M. ;
Mani, A. ;
Bruus, H. ;
Biesheuvel, P. M. ;
Bazant, M. Z. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[4]   THEORY OF ULTRAMICROELECTRODES [J].
AOKI, K .
ELECTROANALYSIS, 1993, 5 (08) :627-639
[5]   Effect of nanopore geometry on ion current rectification [J].
Apel, Pavel Yu ;
Blonskaya, Irina V. ;
Orelovitch, Oleg L. ;
Ramirez, Patricio ;
Sartowska, Bozena A. .
NANOTECHNOLOGY, 2011, 22 (17)
[6]   Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores [J].
Avdoshenko, Stanislav M. ;
Nozaki, Daijiro ;
da Rocha, Claudia Gomes ;
Gonzalez, Jhon W. ;
Lee, Myeong H. ;
Gutierrez, Rafael ;
Cuniberti, Gianaurelio .
NANO LETTERS, 2013, 13 (05) :1969-1976
[7]   Nanofluidics, from bulk to interfaces [J].
Bocquet, Lyderic ;
Charlaix, Elisabeth .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :1073-1095
[8]   Ionic conduction, rectification, and selectivity in single conical nanopores [J].
Cervera, J ;
Schiedt, B ;
Neumann, R ;
Mafé, S ;
Ramírez, P .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (10)
[9]   DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels [J].
Chang, H ;
Kosari, F ;
Andreadakis, G ;
Alam, MA ;
Vasmatzis, G ;
Bashir, R .
NANO LETTERS, 2004, 4 (08) :1551-1556
[10]   Influence of Patterned Concave Depth and Surface Curvature on Anodization of Titania Nanotubes and Alumina Nanopores [J].
Chen, Bo ;
Lu, Kathy .
LANGMUIR, 2011, 27 (19) :12179-12185