Light response of photosynthesis and stomatal conductance of rose leaves in the canopy profile: the effect of lighting on the adaxial and the abaxial sides

被引:10
作者
Paradiso, Roberta [1 ]
de Visser, Pieter H. B. [2 ]
Arena, Carmen [3 ]
Marcelis, Leo F. M. [4 ]
机构
[1] Univ Naples Federico II, Dept Agr Sci, Via Univ 100, I-80055 Naples, Italy
[2] Wageningen UR Greenhouse Hort, POB 16, NL-6700 AA Wageningen, Netherlands
[3] Univ Naples Federico II, Dept Biol, Via Cinthia 4, I-80126 Naples, Italy
[4] Wageningen UR Hort & Prod Physiol, POB 16, NL-6700 AA Wageningen, Netherlands
关键词
absorptance; bent shoot; hydroponics; mechanistic model; reflectance; Rosa hybrida; transmittance; CO2; ASSIMILATION; CARBON FIXATION; GAS-EXCHANGE; NET PHOTOSYNTHESIS; PLANT ARCHITECTURE; PIGMENT CONTENT; LEAF ANATOMY; RADIATION; GROWTH; MODEL;
D O I
10.1071/FP19352
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We investigated the light response of leaf photosynthesis, stomatal conductance and optical properties in rose plants grown in a glasshouse with bending technique. Leaves were lighted from the adaxial or the abaxial side during measurements, performed in four positions in the upright and bent shoots: top leaves, middle leaves, bottom leaves, and bent shoot leaves. Moreover, the effect of the irradiation on the adaxial or abaxial leaf side on whole canopy photosynthesis was estimated through model simulation. No significant differences were found in light transmission, reflection and absorption of leaves and in photosynthesis light response curves among the four positions. In all the leaf positions, light absorption, stomatal conductance and photosynthesis were higher when leaves were lighted from the adaxial compared with the abaxial side. The model showed that a substantial part of the light absorbed by the crop originated from light reflected from the greenhouse floor, and thus the abaxial leaf properties have impact on whole crop light absorbance and photosynthesis. Simulations were performed for crops with leaf area index (LAI) 1, 2 and 3. Simulation at LAI 1 showed the highest reduction of simulated crop photosynthesis considering abaxial properties; however, to a lesser extent photosynthesis was also reduced at LAI 2 and 3. The overall results showed that the model may be helpful in designing crop systems for improved light utilisation by changing lamp position or level of leaf bending and pruning.
引用
收藏
页码:639 / 650
页数:12
相关论文
empty
未找到相关数据