Higher-order topological superconductivity from repulsive interactions in kagome and honeycomb systems

被引:32
作者
Li, Tommy [1 ,2 ]
Geier, Max [1 ,2 ,3 ]
Ingham, Julian [4 ]
Scammell, Harley D. [5 ,6 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, Arnimallee 14, D-14195 Berlin, Germany
[2] Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany
[3] Univ Copenhagen, Ctr Quantum Devices, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[4] Boston Univ, Phys Dept, Commonwealth Ave, Boston, MA 02215 USA
[5] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[6] Univ New South Wales, Australian Res Council Ctr Excellence Future Low, Sydney, NSW 2052, Australia
来源
2D MATERIALS | 2022年 / 9卷 / 01期
基金
欧洲研究理事会; 新加坡国家研究基金会;
关键词
higher order topology; topological materials; unconventional superconductivity; topological superconductivity; BEHAVIOR; FERMIONS; STATES;
D O I
10.1088/2053-1583/ac4060
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss a pairing mechanism in interacting two-dimensional multipartite lattices that intrinsically leads to a second order topological superconducting state with a spatially modulated gap. When the chemical potential is close to Dirac points, oppositely moving electrons on the Fermi surface undergo an interference phenomenon in which the Berry phase converts a repulsive electron-electron interaction into an effective attraction. The topology of the superconducting phase manifests as gapped edge modes in the quasiparticle spectrum and Majorana Kramers pairs at the corners. We present symmetry arguments which constrain the possible form of the electron-electron interactions in these systems and classify the possible superconducting phases which result. Exact diagonalization of the Bogoliubov-de Gennes Hamiltonian confirms the existence of gapped edge states and Majorana corner states, which strongly depend on the spatial structure of the gap. Possible applications to vanadium-based superconducting kagome metals AV(3)Sb(5) (A = K, Rb, Cs) are discussed.
引用
收藏
页数:23
相关论文
共 106 条
[1]   Higher-order topological superconductivity of spin-polarized fermions [J].
Ahn, Junyeong ;
Yang, Bohm-Jung .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[2]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[3]   Interplay of Magnetism and Topological Superconductivity in Bilayer Kagome Metals [J].
Baidya, Santu ;
Mallik, Aabhaas Vineet ;
Bhattacharjee, Subhro ;
Saha-Dasgupta, Tanusri .
PHYSICAL REVIEW LETTERS, 2020, 125 (02)
[4]   Topological nodal-line fermions in spin-orbit metal PbTaSe2 [J].
Bian, Guang ;
Chang, Tay-Rong ;
Sankar, Raman ;
Xu, Su-Yang ;
Zheng, Hao ;
Neupert, Titus ;
Chiu, Ching-Kai ;
Huang, Shin-Ming ;
Chang, Guoqing ;
Belopolski, Ilya ;
Sanchez, Daniel S. ;
Neupane, Madhab ;
Alidoust, Nasser ;
Liu, Chang ;
Wang, BaoKai ;
Lee, Chi-Cheng ;
Jeng, Horng-Tay ;
Zhang, Chenglong ;
Yuan, Zhujun ;
Jia, Shuang ;
Bansil, Arun ;
Chou, Fangcheng ;
Lin, Hsin ;
Hasan, M. Zahid .
NATURE COMMUNICATIONS, 2016, 7
[5]   Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Demir, Ahmet ;
Fang, Shiang ;
Tomarken, Spencer L. ;
Luo, Jason Y. ;
Sanchez-Yamagishi, Javier D. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Ashoori, Ray C. ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :80-+
[6]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[7]  
Chen H., 2021, PHYS REV, V11, DOI [10.1103/PhysRevX.11.031026, DOI 10.1103/PHYSREVX.11.031026]
[8]   Double Superconducting Dome and Triple Enhancement of Tc in the Kagome Superconductor CsV3Sb5 under High Pressure [J].
Chen, K. Y. ;
Wang, N. N. ;
Yin, Q. W. ;
Gu, Y. H. ;
Jiang, K. ;
Tu, Z. J. ;
Gong, C. S. ;
Uwatoko, Y. ;
Sun, J. P. ;
Lei, H. C. ;
Hu, J. P. ;
Cheng, J-G .
PHYSICAL REVIEW LETTERS, 2021, 126 (24)
[9]  
Chew A., 2021, ARXIV210805373CONDMA
[10]   Classification of topological quantum matter with symmetries [J].
Chiu, Ching-Kai ;
Teo, Jeffrey C. Y. ;
Schnyder, Andreas P. ;
Ryu, Shinsei .
REVIEWS OF MODERN PHYSICS, 2016, 88 (03)