Progress of quantum entanglement in a trapped-ion based quantum computer

被引:2
作者
Yum, Dahyun [1 ]
Choi, Taeyoung [1 ]
机构
[1] Ewha Womans Univ, Dept Phys, 52Ewhayeodae Gil, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum computer; Trapped ions; Single qubit gate; Two qubit gate; Entanglement; IMPLEMENTATION; INFORMATION; REALIZATION; GATES; COMPUTATION; ALGORITHM; PHYSICS; STATE;
D O I
10.1016/j.cap.2022.06.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, there have been significant progress toward building a practical quantum computer, demon-strating key ingredients such as single-qubit gates and a two-qubit entangling gate. Among various physical platforms for a potential quantum computing processor, a trapped-ion system has been one of the most promising platforms due to long coherence times, high-fidelity quantum gates, and qubit connectivity. However, scaling up the number of qubits for a practical quantum computing faces a core challenge in operating high-fidelity quantum gates under influence from neighboring qubits. In particular, for the trapped-ion system, unwanted quantum crosstalk between qubits and ions' quantum motional states hinder performing high-fidelity entan-glement as the number of ions increases. In this review, we introduce a trapped-ion system and explain how to perform single-qubit gates and a two-qubit entanglement. Moreover, we mainly address theoretical and exper-imental approaches to achieve high-fidelity and scalable entanglement toward a trapped-ion based quantum computer.
引用
收藏
页码:163 / 177
页数:15
相关论文
共 105 条
[1]   Rydberg atom quantum technologies [J].
Adams, C. S. ;
Pritchard, J. D. ;
Shaffer, J. P. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (01)
[2]   Information storage and retrieval through quantum phase [J].
Ahn, J ;
Weinacht, TC ;
Bucksbaum, PH .
SCIENCE, 2000, 287 (5452) :463-465
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Material platforms for spin-based photonic quantum technologies [J].
Atature, Mete ;
Englund, Dirk ;
Vamivakas, Nick ;
Lee, Sang-Yun ;
Wrachtrup, Joerg .
NATURE REVIEWS MATERIALS, 2018, 3 (05) :38-51
[5]   FIRST 100-QUBIT QUANTUM COMPUTER ENTERS CROWDED RACE [J].
Ball, Philip .
NATURE, 2021, 599 (7886) :542-542
[6]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[7]   Electrodynamically trapped Yb+ ions for quantum information processing [J].
Balzer, C ;
Braun, A ;
Hannemann, T ;
Paape, C ;
Ettler, M ;
Neuhauser, W ;
Wunderlich, C .
PHYSICAL REVIEW A, 2006, 73 (04)
[8]   Towards fault-tolerant quantum computing with trapped ions [J].
Benhelm, Jan ;
Kirchmair, Gerhard ;
Roos, Christian F. ;
Blatt, Rainer .
NATURE PHYSICS, 2008, 4 (06) :463-466
[9]   Ion Trap Quantum Computing with Ca+ Ions [J].
Blatt, R. ;
Haeffner, H. ;
Roos, C. F. ;
Becher, C. ;
Schmidt-Kaler, F. .
QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) :61-73
[10]  
Blumel Reinhold., 2021, npj Quantum Information, V7, P1