Heat equation derivative formulas for vector bundles

被引:41
作者
Driver, BK [1 ]
Thalmaier, A
机构
[1] Univ Calif San Diego, Dept Math 0112, La Jolla, CA 92093 USA
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
基金
美国国家科学基金会;
关键词
heat kernel measure; Malliavin calculus; Bismut formula; integration by parts; Dirac operator; de Rham-Hodge Laplacian; Weitzenbock decomposition;
D O I
10.1006/jfan.2001.3746
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use martingale methods to give Bismut type derivative formulas for differentials and co-differentials of heat semigroups on forms, and more generally for sections of vector bundles. Thr formulas are mainly in terms of Weitzenbock curvature terms; in most cases derivatives of the curvature are not involved. In particular, our results improve B. K. Driver's formula in (1997, J. Math. Pures Appl. (9) 76, 703-737) for logarithmic derivatives of the heat kernel measure on a Riemannian manifold. Our formulas also include the formulas of K. D. Elworthy and X.-M. Li (C) 2001 Academic Press.
引用
收藏
页码:42 / 108
页数:67
相关论文
共 61 条
[21]  
Eells J., 1983, CBMS REGIONAL C SERI, V50, DOI [DOI 10.1090/CBMS/050, 10.1090/cbms/050]
[22]  
ELWORTHY K. D., 1996, ITOS STOCHASTIC CALC, P15
[23]   FORMULAS FOR THE DERIVATIVES OF HEAT SEMIGROUPS [J].
ELWORTHY, KD ;
LI, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 125 (01) :252-286
[24]   Bismut type formulae for differential forms [J].
Elworthy, KD ;
Li, XM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (01) :87-92
[25]  
ELWORTHY KD, 1993, SEM PROB BERL, V27, P159
[26]  
ELWORTHY KD, 1988, ECOLE ETE PROBABILIT, V15, P277
[27]  
ELWORTHY KD, 1999, GEOMETRY DIFFUSION O
[28]  
Emery M., 1989, STOCHASTIC CALCULUS, DOI DOI 10.1007/978-3-642-75051-9
[29]   Towards a Riemannian geometry on the path space over a Riemannian manifold [J].
Enchev, O ;
Stroock, DW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 134 (02) :392-416
[30]  
Fukushima M., 2011, De Gruyter Stud. Math., V19