Heat equation derivative formulas for vector bundles

被引:41
作者
Driver, BK [1 ]
Thalmaier, A
机构
[1] Univ Calif San Diego, Dept Math 0112, La Jolla, CA 92093 USA
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
基金
美国国家科学基金会;
关键词
heat kernel measure; Malliavin calculus; Bismut formula; integration by parts; Dirac operator; de Rham-Hodge Laplacian; Weitzenbock decomposition;
D O I
10.1006/jfan.2001.3746
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use martingale methods to give Bismut type derivative formulas for differentials and co-differentials of heat semigroups on forms, and more generally for sections of vector bundles. Thr formulas are mainly in terms of Weitzenbock curvature terms; in most cases derivatives of the curvature are not involved. In particular, our results improve B. K. Driver's formula in (1997, J. Math. Pures Appl. (9) 76, 703-737) for logarithmic derivatives of the heat kernel measure on a Riemannian manifold. Our formulas also include the formulas of K. D. Elworthy and X.-M. Li (C) 2001 Academic Press.
引用
收藏
页码:42 / 108
页数:67
相关论文
共 61 条
[1]  
Agranovich M., 1997, PARTIAL DIFFERENTIAL, VIX, P1
[2]  
[Anonymous], 1990, CAMBRIDGE TRACTS MAT
[3]  
[Anonymous], 1996, ITOS STOCHASTIC CALC
[4]  
[Anonymous], 1979, PRODUCT INTEGRATION
[5]   Complete lifts of connections and stochastic Jacobi fields [J].
Arnaudon, M ;
Thalmaier, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (03) :283-315
[6]  
Berard P. H., 1986, SPECTRAL GEOMETRY DI
[7]  
Berline N, 1992, HEAT KERNELS DIRAC O
[8]  
Bismut J. M., 1984, Large deviations and the Malliavin calculus, volume 45 of Progress in Mathematics, V45
[9]  
BISMUT JM, 1986, J DIFFER GEOM, V23, P207
[10]   HILBERT COMPLEXES [J].
BRUNING, J ;
LESCH, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 108 (01) :88-132