Kinetics of the OCN- and HOCN formation from the HNCO + H2O thermal reaction in interstellar ice analogs

被引:37
|
作者
Theule, P. [1 ]
Duvernay, F. [1 ]
Ilmane, A. [1 ]
Hasegawa, T. [2 ]
Morata, O. [2 ]
Coussan, S. [1 ]
Danger, G. [1 ]
Chiavassa, T. [1 ]
机构
[1] Univ Aix Marseille 1, Ctr St Jerome, Lab Phys Interact Ion & Mol, F-13397 Marseille, France
[2] NTU, Acad Sinica, Inst Astron & Astrophys, Taipei, Taiwan
关键词
astrochemistry; ISM: molecules; molecular processes; molecular data; TIME-DEPENDENT CHEMISTRY; DENSE MOLECULAR CLOUDS; INFRARED-SPECTROSCOPY; ICES; REACTIVITY; EVOLUTION; BAND; ION;
D O I
10.1051/0004-6361/201016051
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We study in the laboratory the kinetics of the low-temperature OCN- and HOCN formation from the purely thermal reaction of solid HNCO and H2O. The cyanate ion OCN- is an intermediate in the isomerization process of isocyanic acid HNCO into cyanic acid HOCN in water ice. Methods. We study the reaction, isomerization and desorption kinetics of the HNCO/OCN-/HOCN system using Fourier transform infrared spectroscopy. Results. Activation energies of 26 +/- 2 kJ mol(-1) (3127 K) and 36 +/- 1 kJ mol(-1) (4330 K) are found for the HNCO + H2O -> OCN- + H3O+ and OCN- + H3O+ -> HOCN + H2O reactions respectively. Desorption energies of 37 +/- 3 kJ mol(-1) (4450 K) and 40 +/- 3 kJ mol(-1) (4811 K) are measured for HNCO and OCN-, respectively. Conclusions. The present experiment has the important implication that the H2O + HNCO reaction alone cannot account for the observed abundances of solid OCN- in astronomical IR sources.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Kinetics of OCN- formation from the HNCO + NH3 solid-state thermal reaction
    Mispelaer, F.
    Theule, P.
    Duvernay, F.
    Roubin, P.
    Chiavassa, T.
    ASTRONOMY & ASTROPHYSICS, 2012, 540
  • [2] The formation of cyanate ion (OCN-) in interstellar ice analogs
    Hudson, RL
    Moore, MH
    Gerakines, PA
    ASTROPHYSICAL JOURNAL, 2001, 550 (02) : 1140 - 1150
  • [3] A quantitative analysis of OCN- formation in interstellar ice analogs
    van Broekhuizen, FA
    Keane, JV
    Schutte, WA
    ASTRONOMY & ASTROPHYSICS, 2004, 415 (02) : 425 - 436
  • [4] Simultaneous hydrogenation and UV-photolysis experiments of NO in CO-rich interstellar ice analogues; linking HNCO, OCN-, NH2CHO, and NH2OH
    Fedoseev, G.
    Chuang, K. -J.
    van Dishoeck, E. F.
    Ioppolo, S.
    Linnartz, H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (04) : 4297 - 4309
  • [5] Thermal desorption of H2O ice: from nanoscale films to the bulk
    Rosu-Finsen, Alexander
    Chikani, Bharvi
    Salzmann, Christoph G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (02) : 1919 - 1927
  • [6] Quantification of O2 formation during UV photolysis of water ice: H2O and H2O:CO2 ices
    Bulak, M.
    Paardekooper, D. M.
    Fedoseev, G.
    Chuang, K-J
    van Scheltinga, J. Terwisscha
    Eistrup, C.
    Linnartz, H.
    ASTRONOMY & ASTROPHYSICS, 2022, 657
  • [7] Interstellar ice analogs: H2O ice mixtures with CH3OH and NH3 in the far-IR region
    Giuliano, B. M.
    Martin-Domenech, R.
    Escribano, R. M.
    Manzano-Santamaria, J.
    Munoz Caro, G. M.
    ASTRONOMY & ASTROPHYSICS, 2016, 592
  • [8] REAL-TIME OPTICAL SPECTROSCOPY OF VACUUM ULTRAVIOLET IRRADIATED PYRENE: H2O INTERSTELLAR ICE
    Bouwman, J.
    Paardekooper, D. M.
    Cuppen, H. M.
    Linnartz, H.
    Allamandola, L. J.
    ASTROPHYSICAL JOURNAL, 2009, 700 (01) : 56 - 62
  • [9] Cosmic ray sputtering yield of interstellar H2O ice mantles Ice mantle thickness dependence
    Dartois, E.
    Chabot, M.
    Barkach, T. Id
    Rothard, H.
    Auge, B.
    Agnihotri, A. N.
    Domaracka, A.
    Boduch, P.
    ASTRONOMY & ASTROPHYSICS, 2018, 618
  • [10] Isomer-specific kinetics of the C+ + H2O reaction at the temperature of interstellar clouds
    Yang, Tiangang
    Li, Anyang
    Chen, Gary K.
    Yao, Qian
    Suits, Arthur G.
    Guo, Hua
    Hudson, Eric R.
    Campbell, Wesley C.
    SCIENCE ADVANCES, 2021, 7 (02)