Dynamics of two interacting dipoles

被引:26
作者
Laroze, D. [2 ,3 ]
Vargas, P. [1 ,4 ]
Cortes, C. [5 ]
Gutierrez, G. [6 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago, Chile
[3] Pontificia Univ Catolica Valparaiso, Inst Fis, Valparaiso, Chile
[4] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[5] Ctr Estudios Nucl La Reina, Dept Seguridad Nucl, Santiago, Chile
[6] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile
关键词
spin dynamics; dipolar interaction; non-uniform magnetization field;
D O I
10.1016/j.jmmm.2007.12.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the deterministic spin dynamic of two interacting magnetic moments with anisotropy and dipolar interaction under the presence of an applied magnetic field, by using the Landau-Lifshitz equation with and without a damping term. Due to different kinds of interactions, different time scales appear: a long time scale associated with the dipolar interaction and a short time scale associated with the Zeeman interaction. We found that the total magnetization is not conserved; furthermore, for the non-dissipative case it is a fluctuating function of time, with a strong dependence on the strength of the dipolar term. In the dissipative case there is a transient time before the total magnetization reaches its constant value. We examine this critical time as a function of the distance between the magnetic moments and the phenomenological damping coefficient, and found that it strongly depends on these control parameters. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1440 / 1448
页数:9
相关论文
共 13 条
  • [1] Quasiperiodicity, bistability, and chaos in the Landau-Lifshitz equation
    Alvarez, LF
    Pla, O
    Chubykalo, O
    [J]. PHYSICAL REVIEW B, 2000, 61 (17): : 11613 - 11617
  • [2] Analytical solutions of Landau-Lifshitz equation for precessional dynamics
    Bertotti, G
    Mayergoyz, ID
    Serpico, C
    [J]. PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) : 325 - 330
  • [3] Perturbation technique for Landau-Lifshitz-Gilbert equation under elliptically polarized fields
    Bertotti, G
    Mayergoyz, ID
    Serpico, C
    [J]. PHYSICA B, 2001, 306 (1-4): : 47 - 51
  • [4] Nonlinear magnetization dynamics under circularly polarized field
    Bertotti, G
    Serpico, C
    Mayergoyz, ID
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (04) : 724 - 727
  • [5] Langevin-dynamics study of the dynamical properties of small magnetic particles
    García-Palacios, JL
    Lázaro, FJ
    [J]. PHYSICAL REVIEW B, 1998, 58 (22) : 14937 - 14958
  • [6] GILBERT TL, 1955, P C MAGNETISM MAGNET, P253
  • [7] LANDAU L, 1965, COLLECTED PAPERS LAN, P110
  • [8] Landau L. D., 1935, PHYS Z SOWJETUNION, V8, P153, DOI DOI 10.1016/B978-0-08-036364-6.50008-9
  • [9] Dynamical behavior of two interacting magnetic nanoparticles
    Laroze, D
    Vargas, P
    [J]. PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) : 332 - 336
  • [10] GENERALIZED HAMILTONIAN DYNAMICS
    NAMBU, Y
    [J]. PHYSICAL REVIEW D, 1973, 7 (08): : 2405 - 2412