Comparison of Evolutionary Multi-Objective Optimization Algorithms for the Utilization of Fairness in Network Control

被引:0
|
作者
Koeppen, Mario [1 ]
Verschae, Rodrigo [1 ]
Yoshida, Kaori [1 ]
Tsuru, Masato [1 ]
机构
[1] Kyushu Inst Technol, NDRC, Fukuoka, Japan
来源
IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010) | 2010年
关键词
evolutionary computation; meta-heuristics; multi-objective optimization; fairness; maxmin fairness; general fairness relation; Pareto dominance;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We use design principles of evolutionary multiobjective optimization algorithms to define algorithms capable of approximating maximum sets of relations in general. The specific case of fairness relations is considered here, which play a prominent role in the control of resource sharing in data networks. We study maxmin fairness allocation in networks with linear congestion control. Among various design principles, the concepts behind Strength Pareto Evolutionary Algorithm, and the Multi-Objective Particle Swarm Optimization achieve comparable best performance (with the used parameterization within 10% of the fairness state components for up to 20 objectives).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Illustration of fairness in evolutionary multi-objective optimization
    Friedrich, Tobias
    Horoba, Christian
    Neumann, Frank
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (17) : 1546 - 1556
  • [2] MULTI-OBJECTIVE NETWORK RELIABILITY OPTIMIZATION USING EVOLUTIONARY ALGORITHMS
    Aguirre, Oswaldo
    Villanueva, Delia
    Taboada, Heidi
    15TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2009, : 427 - 431
  • [3] Multi-objective evolutionary algorithms for structural optimization
    Coello, CAC
    Pulido, GT
    Aguirre, AH
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2244 - 2248
  • [4] Multi-Objective BOO Optimization with Evolutionary Algorithms
    Shirinzadeh, Saeideh
    Soeken, Mathias
    Drechsler, Rolf
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 751 - 758
  • [5] Research on evolutionary multi-objective optimization algorithms
    Gong, Mao-Guo
    Jiao, Li-Cheng
    Yang, Dong-Dong
    Ma, Wen-Ping
    Ruan Jian Xue Bao/Journal of Software, 2009, 20 (02): : 271 - 289
  • [6] Study of Evolutionary Algorithms for Multi-objective Optimization
    Gaikwad R.
    Lakshmanan R.
    SN Computer Science, 3 (5)
  • [7] Evolutionary algorithms for multi-objective design optimization
    Sefrioui, M
    Whitney, E
    Periaux, J
    Srinivas, K
    COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 224 - 237
  • [8] A Comparison of Multi-objective Evolutionary Algorithms for Simulation-Based Optimization
    Tan, Wen Jun
    Turner, Stephen John
    Aydt, Heiko
    ASIASIM 2012, PT III, 2012, 325 : 60 - 72
  • [9] Comparison of Evolutionary Multi-Objective Optimization Algorithms Using Imitation Game
    Sato, Yuji
    Murakawa, Yoshihisa
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 160 - 163
  • [10] Evolutionary algorithms for multi-objective optimization in HVAC system control strategy
    Nassif, N
    Kajl, S
    Sabourin, R
    NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2: FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES, 2004, : 51 - 56