Rigidity of entire self-shrinking solutions to curvature flows

被引:29
作者
Chau, Albert [1 ]
Chen, Jingyi [1 ]
Yuan, Yu [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2012年 / 664卷
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1515/CRELLE.2011.102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show (a) that any entire graphic self-shrinking solution to the Lagrangian mean curvature flow in C-n with the Euclidean metric is flat; (b) that any space-like entire graphic self-shrinking solution to the Lagrangian mean curvature flow in C-n with the pseudo-Euclidean metric is flat if the Hessian of the potential is bounded below quadratically; and (c) the Hermitian counterpart of (b) for the Kahler Ricci flow.
引用
收藏
页码:229 / 239
页数:11
相关论文
共 10 条
[1]  
Chau A, ARXIV09053869
[2]  
CHAU A, ARXIV09023300
[3]   Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs [J].
Chen, Jingyi ;
Pang, Chao .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (17-18) :1031-1034
[4]   MEAN-CURVATURE EVOLUTION OF ENTIRE GRAPHS [J].
ECKER, K ;
HUISKEN, G .
ANNALS OF MATHEMATICS, 1989, 130 (03) :453-471
[5]   CALIBRATED GEOMETRIES [J].
HARVEY, R ;
LAWSON, HB .
ACTA MATHEMATICA, 1982, 148 :47-157
[6]  
Huang R., ARXIV09112849V5
[7]  
HUISKEN G, 1990, J DIFFER GEOM, V31, P285
[8]  
Nguyen T. A., 2010, INT MATH RES NOTICES, DOI 1093/imrn/rnq242
[9]   Longtime existence of the Lagrangian mean curvature flow [J].
Smoczyk, K .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (01) :25-46
[10]  
Wang L., GEOM DEDICA IN PRESS