Machine learning-based prognosis signature for survival prediction of patients with clear cell renal cell carcinoma

被引:2
作者
Chen, Siteng [1 ]
Guo, Tuanjie [2 ]
Zhang, Encheng [2 ]
Wang, Tao [2 ]
Jiang, Guangliang [3 ]
Wu, Yishuo [4 ]
Wang, Xiang [2 ]
Na, Rong [5 ]
Zhang, Ning [3 ]
机构
[1] Shanghai Jiao Tong Univ, Renji Hosp, Dept Urol, Sch Med, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Urol, Sch Med, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Urol, Sch Med, Shanghai, Peoples R China
[4] Fudan Univ, Huashan Hosp, Dept Urol, Shanghai, Peoples R China
[5] Univ Hong Kong, Queen Mary Hosp, Dept Surg, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Clear cell renal cell carcinoma; Machine learning; Multi -center study; Prognosis; Clinicopathology; TUMOR SIZE; MARKER;
D O I
10.1016/j.heliyon.2022.e10578
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The sole clinicopathological characteristic is not enough for the prediction of survival of patients with clear cell renal cell carcinoma (ccRCC). However, the survival prediction model constructed by machine learning tech-nology for patients with ccRCC using clinicopathological features is rarely reported yet. In this study, a total of 5878 patients diagnosed as ccRCC from four independent patient cohorts were recruited. The least absolute shrinkage and selection operator analysis was implemented to identify optimal clinicopathological characteristics and calculate each coefficient to construct the prognosis model. In addition, weighted gene co-expression network and gene enrichment analysis associated with risk score were also carried out. Three clinicopathologic features were selected for the construction of the prognosis risk score model as the prognostic factors of ccRCC, including tumor size, tumor grade, and tumor stage. In the CPTAC (Clinical Proteomic Tumor Analysis Consortium) cohort, the General cohort, the SEER (Surveillance, Epidemiology, and End Results) cohort, and the Huashan cohort, patients with high-risk score had worse clinical outcomes than patients with low-risk score (hazard ratio 5.15, 4.64, 3.96, and 5.15, respectively). Further functional enrichment analysis demonstrated that our machine learning-based risk score was significantly connected with some cell proliferation-related pathways, consisting of DNA repair, cell division, and cell cycle. In summary, we developed and validated a machine learning-based prognosis prediction model, which might contribute to clinical decision-making for patients with ccRCC.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Automated differentiation of benign renal oncocytoma and chromophobe renal cell carcinoma on computed tomography using deep learning [J].
Baghdadi, Amir ;
Aldhaam, Naif A. ;
Elsayed, Ahmed S. ;
Hussein, Ahmed A. ;
Cavuoto, Lora A. ;
Kauffman, Eric ;
Guru, Khurshid A. .
BJU INTERNATIONAL, 2020, 125 (04) :553-560
[2]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[3]   Are We Using the Best Tumor Size Cut-points for Renal Cell Carcinoma Staging? [J].
Bhindi, Bimal ;
Lohse, Christine M. ;
Mason, Ross J. ;
Westerman, Mary E. ;
Cheville, John C. ;
Tollefson, Matthew K. ;
Boorjian, Stephen A. ;
Thompson, R. Houston ;
Leibovich, Bradley C. .
UROLOGY, 2017, 109 :121-126
[4]   Prognostic significance of Fuhrman grade and age for cancer-specific and overall survival in patients with papillary renal cell carcinoma: results of an international multi-institutional study on 2189 patients [J].
Borgmann, H. ;
Musquera, M. ;
Haferkamp, A. ;
Vilaseca, A. ;
Klatte, T. ;
Shariat, S. F. ;
Scavuzzo, A. ;
Jimenez Rios, M. A. ;
Wolff, I. ;
Capitanio, U. ;
Dell'Oglio, P. ;
Krabbe, L. M. ;
Herrmann, E. ;
Ecke, T. ;
Vergho, D. ;
Huck, N. ;
Wagener, N. ;
Pahernik, S. ;
Zastrow, S. ;
Wirth, M. ;
Surcel, C. ;
Mirvald, C. ;
Prochazkova, K. ;
Hutterer, G. ;
Zigeuner, R. ;
Cindolo, L. ;
Hora, M. ;
Stief, C. G. ;
May, M. ;
Brookman-May, S. D. .
WORLD JOURNAL OF UROLOGY, 2017, 35 (12) :1891-1897
[5]   Deep neural networks are superior to dermatologists in melanoma image classification [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Berking, Carola ;
Haferkamp, Sebastian ;
Hauschild, Axel ;
Weichenthal, Michael ;
Klode, Joachim ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
von Kalle, Christof ;
Froehling, Stefan ;
Schilling, Bastian ;
Utikal, Jochen S. .
EUROPEAN JOURNAL OF CANCER, 2019, 119 :11-17
[6]   ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma [J].
Brooks, Samira A. ;
Brannon, A. Rose ;
Parker, Joel S. ;
Fisher, Jennifer C. ;
Sen, Oishee ;
Kattan, Michael W. ;
Hakimi, A. Ari ;
Hsieh, James J. ;
Choueiri, Toni K. ;
Tamboli, Pheroze ;
Maranchie, Jodi K. ;
Hinds, Peter ;
Miller, C. Ryan ;
Nielsen, Matthew E. ;
Rathmell, W. Kimryn .
EUROPEAN UROLOGY, 2014, 66 (01) :77-84
[7]   Identification of mortality-risk-related missense variant for renal clear cell carcinoma using deep learning [J].
Chen, Jin-Bor ;
Yang, Huai-Shuo ;
Moi, Sin-Hua ;
Chuang, Li-Yeh ;
Yang, Cheng-Hong .
THERAPEUTIC ADVANCES IN CHRONIC DISEASE, 2021, 12
[8]   Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma [J].
Clark, David J. ;
Dhanasekaran, Saravana M. ;
Petralia, Francesca ;
Pan, Jianbo ;
Song, Xiaoyu ;
Hu, Yingwei ;
Leprevost, Felipe da Veiga ;
Reva, Boris ;
Lih, Tung-Shing M. ;
Chang, Hui-Yin ;
Ma, Weiping ;
Huang, Chen ;
Ricketts, Christopher J. ;
Chen, Lijun ;
Krek, Azra ;
Li, Yize ;
Rykunov, Dmitry ;
Li, Qing Kay ;
Chen, Lin S. ;
Ozbek, Umut ;
Vasaikar, Suhas ;
Wu, Yige ;
Yoo, Seungyeul ;
Chowdhury, Shrabanti ;
Wyczalkowski, Matthew A. ;
Ji, Jiayi ;
Schnaubelt, Michael ;
Kong, Andy ;
Sethuraman, Sunantha ;
Avtonomov, Dmitry M. ;
Ao, Minghui ;
Colaprico, Antonio ;
Cao, Song ;
Cho, Kyung-Cho ;
Kalayci, Selim ;
Ma, Shiyong ;
Liu, Wenke ;
Ruggles, Kelly ;
Calinawan, Anna ;
Gumus, Zeynep H. ;
Geizler, Daniel ;
Kawaler, Emily ;
Teo, Guo Ci ;
Wen, Bo ;
Zhang, Yuping ;
Keegan, Sarah ;
Li, Kai ;
Chen, Feng ;
Edwards, Nathan ;
Pierorazio, Phillip M. .
CELL, 2019, 179 (04) :964-+
[9]   Deep learning and radiomics: the utility of Google TensorFlow Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT [J].
Coy, Heidi ;
Hsieh, Kevin ;
Wu, Willie ;
Nagarajan, Mahesh B. ;
Young, Jonathan R. ;
Douek, Michael L. ;
Brown, Matthew S. ;
Scalzo, Fabien ;
Raman, Steven S. .
ABDOMINAL RADIOLOGY, 2019, 44 (06) :2009-2020
[10]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22