Solid state photodimerization of 9-tert-butyl anthracene ester produces an exceptionally metastable polymorph according to first-principles calculations

被引:26
作者
Beran, Gregory J. O. [1 ]
机构
[1] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
ACCURATE ENERGY RANKING; DIPOLE DISPERSION MODEL; CRYSTAL-STRUCTURE; CONFORMATIONS; SHAPE; ACID;
D O I
10.1039/c8ce01985a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular crystal engineering seeks to tune the material properties by controlling the crystal packing. However, the range of achievable properties is constrained by the limited energy range of polymorphs which can be crystallized. Here, computational modeling highlights that a solid-state crystal-to-crystal chemical reaction in 9-tert-butyl anthracene ester (9TBAE) nanorods [Al-Kaysi et al., J. Am. Chem. Soc., 2006, 128, 15938] imparts "synthetic memory" into the crystal structure that allows reproducible formation of a highly metastable, yet long-lived polymorph. Specifically, whereas the vast majority of known polymorphs exhibit lattice energy differences below 10 kJ mol(-1), the conformational polymorph formed via solid state reaction chemistry lies 14 kJ mol(-1) higher in energy than the form grown from solution, according to calculations that combine a dispersion-corrected second-order Moller-Plesset perturbation theory (MP2D) treatment of the monomer and photodimer with a density functional theory treatment (B86bPBE-XDM) of the intermolecular interactions in the crystal. Moreover, the solid-state reaction environment traps a highly unstable intramolecular photodimer conformation which defies the conventional wisdom surrounding conformational polymorphs. These observations suggest that solid-state reaction chemistry represents an under-appreciated strategy for producing polymorphs that would likely be unobtainable otherwise.
引用
收藏
页码:758 / 764
页数:7
相关论文
共 45 条
[1]   Photochemically driven shape changes of crystalline organic nanorods [J].
Al-Kaysi, Rabih O. ;
Mueller, Astrid M. ;
Bardeen, Christopher J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (50) :15938-15939
[2]   Ritonavir: An extraordinary example of conformational polymorphism [J].
Bauer, J ;
Spanton, S ;
Henry, R ;
Quick, J ;
Dziki, W ;
Porter, W ;
Morris, J .
PHARMACEUTICAL RESEARCH, 2001, 18 (06) :859-866
[3]   ON THE LARGE-GRADIENT BEHAVIOR OF THE DENSITY FUNCTIONAL EXCHANGE ENERGY [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (12) :7184-7187
[4]   Predicting Molecular Crystal Properties from First Principles: Finite Temperature Thermochemistry to NMR Crystallography [J].
Beran, Gregory J. O. ;
Hartman, Joshua D. ;
Heit, Yonaton N. .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (11) :2501-2508
[5]   Modeling Polymorphic Molecular Crystals with Electronic Structure Theory [J].
Beran, Gregory J. O. .
CHEMICAL REVIEWS, 2016, 116 (09) :5567-5613
[6]   Predicting Organic Crystal Lattice Energies with Chemical Accuracy [J].
Beran, Gregory J. O. ;
Nanda, Kaushik .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24) :3480-3487
[7]   Polymorphism through Desolvation of the Solvates of a van der Waals Host [J].
Bhattacharya, Suman ;
Saha, Binoy K. .
CRYSTAL GROWTH & DESIGN, 2013, 13 (02) :606-613
[8]  
BURGER A, 1979, MIKROCHIM ACTA, V2, P273
[9]   ANALYTICAL MOLECULAR-SURFACE CALCULATION [J].
CONNOLLY, ML .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1983, 16 (OCT) :548-558
[10]   Facts and fictions about polymorphism [J].
Cruz-Cabeza, Aurora J. ;
Reutzel-Edens, Susan M. ;
Bernstein, Joel .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (23) :8619-8635