ON A CLASS OF PROBLEMS OF DETERMINING THE TEMPERATURE AND DENSITY OF HEAT SOURCES GIVEN INITIAL AND FINAL TEMPERATURE

被引:76
作者
Orazov, I. [1 ]
Sadybekov, M. A. [2 ]
机构
[1] S Kazakhstan State Univ, Shymkent, Kazakhstan
[2] Inst Math Informat & Mech, Alma Ata, Kazakhstan
关键词
inverse problem; heat equation; initial temperature; final temperature; not strongly regular boundary conditions; Sturm-type boundary conditions; Fourier series; orthogonal basis;
D O I
10.1134/S0037446612010120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of problems modeling the process of determining the temperature and density of heat sources given initial and finite temperature. Their mathematical statements involve inverse problems for the heat equation in which, solving the equation, we have to find the unknown right-hand side depending only on the space variable. We prove the existence and uniqueness of classical solutions to the problem, solving the problem independently of whether the corresponding spectral problem (for the operator of multiple differentiation with not strongly regular boundary conditions) has a basis of generalized eigenfunctions.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 13 条
[1]  
[Anonymous], LINEAR DIFFERENTIA 1
[2]  
[Anonymous], LINEAR DIFFERENTIA 2
[3]  
Belov A. Ya., 1989, SOV MATH DOKL, V39, P601
[4]  
Bubnov B. A., 1988, SOV MATH DOKL, V37, P130
[5]  
Bubnov B. A., 1986, NONCLASSICAL EQUATIO, P25
[6]  
Kaliev I. A., 2010, J APP IND MATH, V4, P332
[7]  
Kostin A. B., 1993, RUSSIAN ACAD SCI SB, V75, P473
[8]  
Kozhanov A. I., 2004, COMP MATH MATH PHYS, V44, P657
[9]   SPECTRAL THEORY OF 2-POINT DIFFERENTIAL-OPERATORS DETERMINED BY -D2 .2. ANALYSIS OF CASES [J].
LANG, P ;
LOCKER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 146 (01) :148-191
[10]  
Levitan B. M., 1988, STURM LIOUVILLE DIRA