Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the Potts model

被引:30
作者
Jacobsen, J. L. [1 ,2 ]
Saleur, H. [2 ,3 ]
机构
[1] Univ Paris 11, LPTMS, F-91405 Orsay, France
[2] CENS, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[3] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
关键词
21;
D O I
10.1103/PhysRevLett.100.087205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine exactly the probability distribution of the number N-c of valence bonds connecting a subsystem of length L > 1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S-VB=< N-c > ln2=4ln2/pi(2) lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3 lnL. Our results generalize to the Q-state Potts model.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Valence bond entanglement entropy [J].
Alet, Fabien ;
Capponi, Sylvain ;
Laflorencie, Nicolas ;
Mambrini, Matthieu .
PHYSICAL REVIEW LETTERS, 2007, 99 (11)
[2]  
AMICO L, IN PRESS REV MOD PHY
[3]   Some formal results for the valence bond basis [J].
Beach, K. S. D. ;
Sandvik, Anders W. .
NUCLEAR PHYSICS B, 2006, 750 (03) :142-178
[4]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[5]   A STUDY OF THE BILINEAR BIQUADRATIC SPIN-1 ANTIFERROMAGNETIC CHAIN USING THE VALENCE-BOND BASIS [J].
CHANG, K ;
AFFLECK, I ;
HAYDEN, GW ;
SOOS, ZG .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (01) :153-167
[6]   Topological estimator of block entanglement for heisenberg antiferromagnets [J].
Chhajlany, Ravindra W. ;
Tomczak, Piotr ;
Wojcik, Antoni .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[7]   Interacting anyons in topological quantum liquids: The golden chain [J].
Feiguin, Adrian ;
Trebst, Simon ;
Ludwig, Andreas W. W. ;
Troyer, Matthias ;
Kitaev, Alexei ;
Wang, Zhenghan ;
Freedman, Michael H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[8]   GEOMETRIC AND RENORMALIZED ENTROPY IN CONFORMAL FIELD-THEORY [J].
HOLZHEY, C ;
LARSEN, F ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1994, 424 (03) :443-467
[9]  
JACOBSEN JL, IN PRESS, P5701
[10]   Boundary Liouville theory and 2D quantum gravity [J].
Kostov, IK ;
Ponsot, B ;
Serban, D .
NUCLEAR PHYSICS B, 2004, 683 (03) :309-362