POSITIVE SOLUTIONS FOR PARAMETRIC NONLINEAR PERIODIC PROBLEMS WITH COMPETING NONLINEARITIES

被引:0
作者
Aizicovici, Sergiu [1 ]
Papageorgiou, Nikolaos S. [2 ]
Staicu, Vasile [3 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[3] Univ Aveiro, CIDMA, Dept Math, P-3810193 Aveiro, Portugal
关键词
Nonhomogeneous differential operator; positive solution; local minimizer; nonlinear maximum principle; mountain pass theorem; bifurcation; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator plus an indefinite potential and a reaction having the competing effects of concave and convex terms. For the superlinear (concave) term we do not employ the usual in such cases Ambrosetti-Rabinowitz condition. Using variational methods together with truncation, perturbation and comparison techniques, we prove a bifurcation-type theorem describing the set of positive solutions as the parameter varies.
引用
收藏
页数:18
相关论文
共 16 条
[1]  
Aizicovici S., 2012, ANN U BUCH MATH 3, V3, P129
[2]   NODAL AND MULTIPLE SOLUTIONS FOR NONLINEAR PERIODIC PROBLEMS WITH COMPETING NONLINEARITIES [J].
Aizicovici, Sergiu ;
Papageorgiou, Nikolaos S. ;
Staicu, Vasile .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (03)
[3]   Positive solutions for nonlinear periodic problems with concave terms [J].
Aizicovici, Sergiu ;
Papageorgiou, Nikolaos S. ;
Staicu, Vasile .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :866-883
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]  
[Anonymous], 2008, MEM AM MATH SOC
[6]   On the Time Periodic Free Boundary Associated to Some Nonlinear Parabolic Equations [J].
Badii, M. ;
Diaz, J. I. .
BOUNDARY VALUE PROBLEMS, 2010,
[7]  
Ben-Naoum A.K., 1997, Differential Integral Equations, V10, P1093
[8]  
Brezis H, 2010, DIFFER INTEGRAL EQU, V23, P801
[9]   PAIRS OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL P-LAPLACIAN [J].
DECOSTER, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (05) :669-681
[10]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521