OPERATOR NORM AND NUMERICAL RADIUS ANALOGUES OF COHEN'S INEQUALITY

被引:0
作者
Drnovsek, Roman [1 ]
机构
[1] Univ Ljubljana, Dept Math, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2020年 / 23卷 / 02期
关键词
Operator norm; numerical radius; spectral radius;
D O I
10.7153/mia-2020-23-55
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be an invertible multiplication operator on L-2(X,mu), and let A be a bounded operator on L-2(X,mu). In this note we prove that parallel to A parallel to(2)<= parallel to DA parallel to parallel to D(-1)A parallel to, where parallel to.parallel to denotes the operator norm. If, in addition, the operators A and D are positive, we also have w(A)(2 )<= w(DA)w(D(-1)A) , where w denotes the numerical radius.
引用
收藏
页码:671 / 675
页数:5
相关论文
共 4 条
[1]  
[Anonymous], 2013, Real Analysis: Modern Techniques and Their Applications (Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts)
[2]   CAUCHY INEQUALITIES FOR THE SPECTRAL RADIUS OF PRODUCTS OF DIAGONAL AND NONNEGATIVE MATRICES [J].
Cohen, Joel E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) :3665-3674
[3]   Stochastic population dynamics in a Markovian environment implies Taylor's power law of fluctuation scaling [J].
Cohen, Joel E. .
THEORETICAL POPULATION BIOLOGY, 2014, 93 :30-37
[4]  
Gustafson K., 1997, Numerical Range