Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries

被引:67
作者
Uhlenbruck, Sven [1 ,2 ]
Dornseiffer, Juergen [1 ,2 ]
Lobe, Sandra [1 ,2 ]
Dellen, Christian [1 ,2 ]
Tsai, Chih-Long [1 ,2 ]
Gotzen, Benjamin [1 ,2 ]
Sebold, Doris [1 ,2 ]
Finsterbusch, Martin [1 ,2 ]
Guillon, Olivier [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany
[2] Julich Aachen Res Alliance JARA Energy, Julich, Germany
[3] Rhein Westfal Tech Hsch RWTH Aachen, Inst Gesteinshuttenkunde, Mauerstr 5, D-52064 Aachen, Germany
关键词
Solid-state batteries; Li7La3Zr2O12; Ceramic processing; Thin-film technology; CHEMICAL COMPATIBILITY; INTERFACE MODIFICATION; LI7LA3ZR2O12; LICOO2; CONDUCTIVITY; FILMS;
D O I
10.1007/s10832-016-0062-x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid-state lithium batteries comprising a ceramic electrolyte instead of a liquid one enable safer high-energy batteries. Their manufacturing usually requires a high temperature heat treatment to interconnect electrolyte, electrodes, and if applicable, further components like current collectors. Tantalum-substituted Li7La3Zr2O12 as electrolyte and LiCoO2 as active material on the cathode side were chosen because of their high ionic conductivity and energy density, respectively. However, both materials react severely with each other at temperatures around 1085 A degrees C thus leading to detrimental secondary phases. Thin-film technologies open a pathway for manufacturing compounds of electrolyte and active material at lower processing temperatures. Two of them are addressed in this work to manufacture thin electrolyte layers of the aforementioned materials at low temperatures: physical vapor deposition and coating technologies with liquid precursors. They are especially applicable for electrolyte layers since electrolytes require a high density while at the same time their thickness can be as thin as possible, provided that the separation of the electrodes is still guaranteed.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 28 条
[1]   Electrochemical properties of Li7La3Zr2O12-based solid state battery [J].
Ahn, Cheol-Woo ;
Choi, Jong-Jin ;
Ryu, Jungho ;
Hahn, Byung-Dong ;
Kim, Jong-Woo ;
Yoon, Woon-Ha ;
Choi, Joon-Hwan ;
Lee, Jong-Sook ;
Park, Dong-Soo .
JOURNAL OF POWER SOURCES, 2014, 272 :554-558
[2]   SYNTHESIS AND THERMAL-STABILITY OF LICOO2 [J].
ANTOLINI, E ;
FERRETTI, M .
JOURNAL OF SOLID STATE CHEMISTRY, 1995, 117 (01) :1-7
[3]  
Beck C., 1998, J MATER RES, V13, P3147
[4]   Inkjet Printing of Microporous Silica Gas Separation Membranes [J].
Bram, Martin ;
Dornseiffer, Juergen ;
Hoffmann, Jan ;
van Gestel, Tim ;
Meulenberg, Wilhelm A. ;
Stoever, Detlev .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2015, 98 (08) :2388-2394
[5]   Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films [J].
Buenting, A. ;
Uhlenbruck, S. ;
Dellen, C. ;
Finsterbusch, M. ;
Tsai, C. -L. ;
Sebold, D. ;
Buchkremer, H. P. ;
Vassen, R. .
JOURNAL OF POWER SOURCES, 2015, 281 :326-333
[6]   Oxidation behaviour of Fe-Cr-Al alloys during resistance and furnace heating [J].
Echsler, H ;
Hattendorf, H ;
Singheiser, L ;
Quadakkers, WJ .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2006, 57 (02) :115-121
[7]   Synthesis and characterization of tetravalent titanium (Ti4+) substituted LiCoO2 for lithium-ion batteries [J].
Ganesan, M. ;
Sundararajan, S. ;
Dhananjeyan, M. V. T. ;
Sarangapani, K. B. ;
Renganathan, N. G. .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 131 (1-3) :203-209
[8]   GROWTH OF VAPOR-DEPOSITED COBALT FILMS ON PT(111) STUDIED BY SCANNING-TUNNELING-MICROSCOPY [J].
GRUTTER, P ;
DURIG, UT .
PHYSICAL REVIEW B, 1994, 49 (03) :2021-2029
[9]  
Hubaud A. A., 2015, J ALLOYS COMPOUNDS, V804
[10]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/NMAT3066, 10.1038/nmat3066]