Spatially dense air pollutant sampling: Implications of spatial variability on the representativeness of stationary air pollutant monitors

被引:75
作者
Li, Hugh Z. [1 ]
Gu, Peishi [1 ]
Ye, Qing [1 ]
Zimmerman, Naomi [1 ,3 ]
Robinson, Ellis S. [1 ]
Subramanian, R. [1 ]
Apte, Joshua S. [2 ]
Robinson, Allen L. [1 ]
Presto, Albert A. [1 ]
机构
[1] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA
[2] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA
[3] Univ British Columbia, Dept Mech Engn, Vancouver, BC, Canada
关键词
Particulate matter; Exposure; Low-cost sensors; Spatial variations; USE REGRESSION-MODELS; SHORT-TERM EXPOSURE; ULTRAFINE PARTICLES; PARTICULATE MATTER; HIGH-RESOLUTION; GLOBAL BURDEN; BLACK CARBON; SENSOR PERFORMANCE; EMISSION FACTORS; MOBILE;
D O I
10.1016/j.aeaoa.2019.100012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Long- and short-term exposure to airborne pollutants results in adverse health effects. Regulatory monitors can be used to determine if regional concentrations meet regulatory standards of air pollution. As assessments of air pollutant exposure become more spatially resolved, evaluation is needed to assess the spatial representativeness of monitors in different environments. We measured NO2, ultrafine particle concentration (UFP), and PM1 with both stationary and mobile platforms in Pittsburgh, PA in 2016 and 2017. We sampled in eight -1 km(2) neighborhoods representing different land use and exposure regimes (e.g., urban and suburban, high and low traffic). Mobile sampling was conducted on up to 25 days in each neighborhood to study fine-scale spatial variation in pollutant concentrations. NO2 exhibited within-neighborhood spatial variation, with hotspots elevated by up to a factor of 5 above the regional background. Spatial differences in UFP within the same 1 km(2) neighborhoods could be a factor of 2.4 times regional background. PM1 was more regional and less spatially variable. Most neighborhoods exhibited less than 1 mu gm(-3) spatial variability in PM1. Spatial variability of NO2 and UFP showed moderate correlation (R-2 > 0.5) with traditional land use covariates such as traffic volume and restaurant density. We used the Wilcoxon rank-sum test to calculate the fraction of each neighborhood represented by the same underlying concentration distribution. PM1 was the most spatially homogeneous, with 80-100% of each 1 km(2) area being statistically similar to a reference location. Quantifying pollutant spatial patterns with high fidelity (e.g.,< 2 ppb NO2 or < 1 mu gm(-3) PM1) seems unattainable in many urban areas unless the sampling network is significantly dense, with more than one or two nodes per km(2).
引用
收藏
页数:13
相关论文
共 70 条
[1]   Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association [J].
Brook, Robert D. ;
Rajagopalan, Sanjay ;
Pope, C. Arden, III ;
Brook, Jeffrey R. ;
Bhatnagar, Aruni ;
Diez-Roux, Ana V. ;
Holguin, Fernando ;
Hong, Yuling ;
Luepker, Russell V. ;
Mittleman, Murray A. ;
Peters, Annette ;
Siscovick, David ;
Smith, Sidney C., Jr. ;
Whitsel, Laurie ;
Kaufman, Joel D. .
CIRCULATION, 2010, 121 (21) :2331-2378
[2]   High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data [J].
Apte, Joshua S. ;
Messier, Kyle P. ;
Gani, Shahzad ;
Brauer, Michael ;
Kirchstetter, Thomas W. ;
Lunden, Melissa M. ;
Marshall, Julian D. ;
Portier, Christopher J. ;
Vermeulen, Roel C. H. ;
Hamburg, Steven P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (12) :6999-7008
[3]   Estimated long-term outdoor air pollution concentrations in a cohort study [J].
Beelen, Rob ;
Hoek, Gerard ;
Fischer, Paul ;
van den Brandt, Piet A. ;
Brunekreef, Bert .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (07) :1343-1358
[4]   Mobile air monitoring data-processing strategies and effects on spatial air pollution trends [J].
Brantley, H. L. ;
Hagler, G. S. W. ;
Kimbrough, E. S. ;
Williams, R. W. ;
Mukerjee, S. ;
Neas, L. M. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (07) :2169-2183
[5]   Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013 [J].
Brauer, Michael ;
Freedman, Greg ;
Frostad, Joseph ;
van Donkelaar, Aaron ;
Martin, Randall V. ;
Dentener, Frank ;
van Dingenen, Rita ;
Estep, Kara ;
Amini, Heresh ;
Apte, Joshua S. ;
Balakrishnan, Kalpana ;
Barregard, Lars ;
Broday, David ;
Feigin, Valery ;
Ghosh, Santu ;
Hopke, Philip K. ;
Knibbs, Luke D. ;
Kokubo, Yoshihiro ;
Liu, Yang ;
Ma, Stefan ;
Morawska, Lidia ;
Texcalac Sangrador, Jose Luis ;
Shaddick, Gavin ;
Anderson, H. Ross ;
Vos, Theo ;
Forouzanfar, Mohammad H. ;
Burnett, Richard T. ;
Cohen, Aaron .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (01) :79-88
[6]   An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure [J].
Burnett, Richard T. ;
Pope, C. Arden, III ;
Ezzati, Majid ;
Olives, Casey ;
Lim, Stephen S. ;
Mehta, Sumi ;
Shin, Hwashin H. ;
Singh, Gitanjali ;
Hubbell, Bryan ;
Brauer, Michael ;
Anderson, H. Ross ;
Smith, Kirk R. ;
Balmes, John R. ;
Bruce, Nigel G. ;
Kan, Haidong ;
Laden, Francine ;
Pruess-Ustuen, Annette ;
Turner, Michelle C. ;
Gapstur, Susan M. ;
Diver, W. Ryan ;
Cohen, Aaron .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2014, 122 (04) :397-403
[7]  
Cohen AJ, 2017, LANCET, V389, P1907, DOI [10.1016/S0140-6736(17)30505-6, 10.1016/s0140-6736(17)30505-6]
[8]   Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements [J].
Cross, Eben S. ;
Williams, Leah R. ;
Lewis, David K. ;
Magoon, Gregory R. ;
Onasch, Timothy B. ;
Kaminsky, Michael L. ;
Worsnop, Douglas R. ;
Jayne, John T. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (09) :3575-3588
[9]   City-level variations in NOx emissions derived from hourly monitoring data in Chicago [J].
de Foy, Benjamin .
ATMOSPHERIC ENVIRONMENT, 2018, 176 :128-139
[10]   Development of Land Use Regression Models for Particle Composition in Twenty Study Areas in Europe [J].
de Hoogh, Kees ;
Wang, Meng ;
Adam, Martin ;
Badaloni, Chiara ;
Beelen, Rob ;
Birk, Matthias ;
Cesaroni, Giulia ;
Cirach, Marta ;
Declercq, Christophe ;
Dedele, Audrius ;
Dons, Evi ;
de Nazelle, Audrey ;
Eeftens, Marloes ;
Eriksen, Kirsten ;
Eriksson, Charlotta ;
Fischer, Paul ;
Grazuleviciene, Regina ;
Gryparis, Alexandros ;
Hoffmann, Barbara ;
Jerrett, Michael ;
Katsouyanni, Klea ;
Iakovides, Minas ;
Lanki, Timo ;
Lindley, Sarah ;
Madsen, Christian ;
Moelter, Anna ;
Mosler, Gioia ;
Nador, Gizella ;
Nieuwenhuijsen, Mark ;
Pershagen, Goran ;
Peters, Annette ;
Phuleria, Harisch ;
Probst-Hensch, Nicole ;
Raaschou-Nielsen, Ole ;
Quass, Ulrich ;
Ranzi, Andrea ;
Stephanou, Euripides ;
Sugiri, Dorothea ;
Schwarze, Per ;
Tsai, Ming-Yi ;
Yli-Tuomi, Tarja ;
Varro, Mihaly J. ;
Vienneau, Danielle ;
Weinmayr, Gudrun ;
Brunekreef, Bert ;
Hoek, Gerard .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) :5778-5786