Symplectic duality of symmetric spaces

被引:15
|
作者
Di Scala, Antonio J. [2 ]
Loi, Andrea [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Kahler metrics; bounded domains; symplectic coordinates; darboux theorem; Jordan triple systems; Bergman operator;
D O I
10.1016/j.aim.2007.10.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M subset of C-n be a complex n-dimensional Hermitian symmetric space endowed with the hyperbolic form omega(hyp). Denote by (M*, omega(FS)) the compact dual of (M, omega(hyp)), where omega(FS) is the Fubini-Study form on M*. Our first result is Theorem 1.1 where, with the aid of the theory of Jordan triple systems, we construct an explicit symplectic duality, namely a diffeomorphism Psi(M):M -> R-2n = C-n subset of M* satisfying Psi(*)(M)omega(0) = omega(hyp) and Psi(*)(M)omega(FS) = omega(0) for the pull-back of PM, where omega(0) is the restriction to M of the flat Kahler form of the Hermitian positive Jordan triple system associated to M. Amongst other properties of the map Psi(M), we also show that it takes (complete) complex and totally geodesic submanifolds of M through the origin to complex linear subspaces of C-n. As a byproduct of the proof of Theorem 1.1 we get an interesting characterization (Theorem 5.3) of the Bergman form of a Hermitian symmetric space in terms of its restriction to classical complex and totally geodesic submanifolds passing through the origin. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2336 / 2352
页数:17
相关论文
共 50 条
  • [1] Generalized symplectic symmetric spaces
    Maciej Bocheński
    Aleksy Tralle
    Geometriae Dedicata, 2014, 171 : 329 - 343
  • [2] Semisimple symplectic symmetric spaces
    Bieliavsky, P
    GEOMETRIAE DEDICATA, 1998, 73 (03) : 245 - 273
  • [3] Generalized symplectic symmetric spaces
    Bochenski, Maciej
    Tralle, Aleksy
    GEOMETRIAE DEDICATA, 2014, 171 (01) : 329 - 343
  • [4] Semisimple Symplectic Symmetric Spaces
    P. Bieliavsky
    Geometriae Dedicata, 1998, 73 : 245 - 273
  • [5] Extrinsic symplectic symmetric spaces
    Cahen, Michel
    Gutt, Simone
    Richard, Nicolas
    Schwachhoefer, Lorenz
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (04) : 409 - 425
  • [6] Duality of gauges and symplectic forms in vector spaces
    Vitor Balestro
    Horst Martini
    Ralph Teixeira
    Collectanea Mathematica, 2021, 72 : 501 - 525
  • [7] Duality of gauges and symplectic forms in vector spaces
    Balestro, Vitor
    Martini, Horst
    Teixeira, Ralph
    COLLECTANEA MATHEMATICA, 2021, 72 (03) : 501 - 525
  • [8] Extrinsically immersed symplectic symmetric spaces
    Tom Krantz
    Lorenz J. Schwachhöfer
    Annals of Global Analysis and Geometry, 2010, 37 : 379 - 391
  • [9] Extrinsically immersed symplectic symmetric spaces
    Krantz, Tom
    Schwachhoefer, Lorenz J.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (04) : 379 - 391
  • [10] DUALITY AND RADON TRANSFORM FOR SYMMETRIC SPACES
    HELGASON, S
    AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (04) : 667 - &