Thermal expansion and phonon anharmonicity of cuprite studied by inelastic neutron scattering and ab initio calculations

被引:8
作者
Saunders, C. N. [1 ]
Kim, D. S. [2 ]
Hellman, O. [3 ,4 ]
Smith, H. L. [5 ]
Weadock, N. J. [6 ]
Omelchenko, S. T. [1 ]
Granroth, G. E. [7 ]
Bernal-Choban, C. M. [1 ]
Lohaus, S. H. [1 ]
Abernathy, D. L. [7 ]
Fultz, B. [1 ]
机构
[1] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
[4] Weizmann Inst Sci, Dept Mol Chem & Mat Sci, IL-76100 Rehovot, Israel
[5] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA
[6] Univ Colorado Boulder, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[7] Oak Ridge Natl Lab ORNL, Neutron Scattering Div, Oak Ridge, TN 37831 USA
关键词
RAMAN-SCATTERING; CUPROUS-OXIDE; CU2O; PHOTOLUMINESCENCE; SPECTRUM; EXCITON;
D O I
10.1103/PhysRevB.105.174308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inelastic neutron scattering measurements were performed with a time-of-flight chopper spectrometer to observe phonons in all parts of the Brillouin zone of a single crystal of cuprite Cu2O. We reduced the experimental data to phonon dispersions in the high-symmetry directions, and changes between 10 and 300 K are reported. In this paper, we show ab initio quasiharmonic (QH) and anharmonic (AH) calculations of phonon dispersions. We performed all AH calculations with a temperature-dependent effective potential method. Both QH and AH calculations account for the small negative thermal expansion of cuprite at low temperatures. However, the measured temperature-dependent phonon behavior was predicted more accurately with the AH calculations than the QH ones. Nevertheless, at 300 K, the cubic AH used in this paper did not entirely account for the experimental phonon dispersions in cuprite.
引用
收藏
页数:9
相关论文
共 64 条
[1]  
Abdu Y., 2009, Bayero Journal of Pure and Applied Sciences, V2, P8
[2]   Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source [J].
Abernathy, D. L. ;
Stone, M. B. ;
Loguillo, M. J. ;
Lucas, M. S. ;
Delaire, O. ;
Tang, X. ;
Lin, J. Y. Y. ;
Fultz, B. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (01)
[3]   Theory of thermal expansion: Quasi-harmonic approximation and corrections from quasi-particle renormalization [J].
Allen, Philip B. .
MODERN PHYSICS LETTERS B, 2020, 34 (02)
[4]  
aps.org, US, DOI [10.1103/PhysRevB.105.174308, DOI 10.1103/PHYSREVB.105.174308]
[5]  
Arnold O., 2014, NUCL INSTRUM METHO A, V764
[6]   FIRST ORDER RAMAN SPECTRUM OF CU20 [J].
BALKANSKI, M ;
NUSIMOVICI, MA ;
REYDELLET, J .
SOLID STATE COMMUNICATIONS, 1969, 7 (11) :815-+
[7]  
Barron T.H. K., 1974, DYNAMICAL PROPERTIES, P391
[8]   STUDY OF PHONON DISPERSION-RELATIONS IN CUPROUS-OXIDE BY INELASTIC NEUTRON-SCATTERING [J].
BEG, MM ;
SHAPIRO, SM .
PHYSICAL REVIEW B, 1976, 13 (04) :1728-1734
[9]   Ab initio lattice dynamics and thermal expansion of Cu2O [J].
Bohnen, Klaus-Peter ;
Heid, Rolf ;
Pintschovius, Lothar ;
Soon, Aloysius ;
Stampfl, Catherine .
PHYSICAL REVIEW B, 2009, 80 (13)
[10]   THE COPPER OXIDE RECTIFIER [J].
BRATTAIN, WH .
REVIEWS OF MODERN PHYSICS, 1951, 23 (03) :203-212