Studying the effective brain connectivity using multiregression dynamic models

被引:5
作者
Costa, Lilia [1 ,6 ]
Nichols, Thomas [2 ,3 ,4 ,7 ]
Smith, Jim Q. [5 ]
机构
[1] Univ Fed Bahia, Salvador, BA, Brazil
[2] Oxford Big Data Inst, Oxford, England
[3] Li Ka Shing Ctr Hlth Informat, Edmonton, AB, Canada
[4] Univ Oxford, Nuffield Dept Populat Hlth, Discovery, Oxford, England
[5] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[6] Univ Fed Bahia, Inst Matemat & Estat, Av Adhemar Barros S-N, BR-40170110 Salvador, BA, Brazil
[7] Univ Oxford, Big Data Inst, Li Ka Shing Ctr Hlth Informat & Discovery, Old Rd Campus, Oxford OX3 7LF, England
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Multiregression dynamic model; Bayesian network; effective connectivity; functional magnetic resonance imaging; integer programming algorithm; BAYESIAN NETWORKS; FMRI; CAUSALITY; SYSTEMS; FSL;
D O I
10.1214/17-BJPS375
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Multiregression Dynamic Model (MDM) is a multivariate graphical model for a multidimensional time series that allows the estimation of time-varying effective connectivity. An MDM is a state space model where connection weights reflect the contemporaneous interactions between brain regions. Because the marginal likelihood has a closed form, model selection across a large number of potential connectivity networks is easy to perform. With application of the Integer Programming Algorithm, we can quickly find optimal models that satisfy acyclic graph constraints and, due to a factorisation of the marginal likelihood, the search over all possible directed (acyclic or cyclic) graphical structures is even faster. These methods are illustrated using recent resting-state and steady-state task fMRI data.
引用
收藏
页码:765 / 800
页数:36
相关论文
共 52 条
[1]  
[Anonymous], 2007, CONSTRAINT INTEGER P
[2]  
[Anonymous], 2011, P 27 C UNC ART INT
[3]   Partial correlation and conditional correlation as measures of conditional independence [J].
Baba, K ;
Shibata, R ;
Sibuya, M .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2004, 46 (04) :657-664
[4]  
Bartlett M., 2013, ARXIV13096825
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Mapping and correction of vascular hemodynamic latency in the BOLD signal [J].
Chang, Catie ;
Thomason, Moriah E. ;
Glover, Gary H. .
NEUROIMAGE, 2008, 43 (01) :90-102
[7]   Searching Multiregression Dynamic Models of Resting-State fMRI Networks Using Integer Programming [J].
Costa, Lilia ;
Smith, Jim ;
Nichols, Thomas ;
Cussens, James ;
Duff, Eugene P. ;
Makin, Tamar R. .
BAYESIAN ANALYSIS, 2015, 10 (02) :441-478
[8]   A simple greedy algorithm for reconstructing pedigrees [J].
Cowell, Robert G. .
THEORETICAL POPULATION BIOLOGY, 2013, 83 :55-63
[9]  
Cussens J., 2010, WCB ICLP
[10]   Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation [J].
David, Olivier ;
Guillemain, Isabelle ;
Saillet, Sandrine ;
Reyt, Sebastien ;
Deransart, Colin ;
Segebarth, Christoph ;
Depaulis, Antoine .
PLOS BIOLOGY, 2008, 6 (12) :2683-2697