Bias in, bias out: Underreporting and underrepresentation of diverse skin types in machine learning research for skin cancer detection- A scoping review

被引:52
作者
Guo, Lisa N. [1 ,2 ]
Lee, Michelle S. [1 ,2 ]
Kassamali, Bina [1 ,2 ]
Mita, Carol [1 ]
Nambudiri, Vinod E. [1 ,2 ]
机构
[1] Harvard Med Sch, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Dermatol, 221 Longwood Ave, Boston, MA 02115 USA
关键词
artificial intelligence; machine learning; melanoma; racial diversity; skin cancer; skin of color;
D O I
10.1016/j.jaad.2021.06.884
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
[No abstract available]
引用
收藏
页码:157 / 159
页数:3
相关论文
共 5 条
[1]   Machine Learning and Health Care Disparities in Dermatology [J].
Adamson, Adewole S. ;
Smith, Avery .
JAMA DERMATOLOGY, 2018, 154 (11) :1247-1248
[2]   Disparities in dermatology educational resources [J].
Ebede, Tobechi ;
Papier, Art .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2006, 55 (04) :687-690
[3]   Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms [J].
Kaushal, Amit ;
Altman, Russ ;
Langlotz, Curt .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 324 (12) :1212-1213
[4]   Addressing Bias in Artificial Intelligence in Health Care [J].
Parikh, Ravi B. ;
Teeple, Stephanie ;
Navathe, Amol S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (24) :2377-2378
[5]  
Welcome to ISIC, INT SKIN IM COLL