Fast DNA sequencing with a graphene-based nanochannel device

被引:64
作者
Min, Seung Kyu [1 ]
Kim, Woo Youn
Cho, Yeonchoo
Kim, Kwang S.
机构
[1] Pohang Univ Sci & Technol, Ctr Superfunct Mat, Dept Chem, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/NNANO.2010.283
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Devices in which a single strand of DNA is threaded through a nanopore could be used to efficiently sequence DNA(1-9). However, various issues will have to be resolved to make this approach practical, including controlling the DNA translocation rate, suppressing stochastic nucleobase motions, and resolving the signal overlap between different nucleobases(4,7). Here, we demonstrate theoretically the feasibility of DNA sequencing using a fluidic nanochannel functionalized with a graphene nanoribbon. This approach involves deciphering the changes that occur in the conductance of the nanoribbon(10,11) as a result of its interactions with the nucleobases via pi-pi stacking(12,13). We show that as a DNA strand passes through the nanochannel(14), the distinct conductance characteristics of the nanoribbon(15-17) (calculated using a method based on density functional theory coupled to non-equilibrium Green function theory(18-20)) allow the different nucleobases to be distinguished using a data-mining technique and a two-dimensional transient autocorrelation analysis. This fast and reliable DNA sequencing device should be experimentally feasible in the near future.
引用
收藏
页码:162 / 165
页数:4
相关论文
共 30 条
[1]   Structures and interaction energies of stacked graphene-nucleobase complexes [J].
Antony, Jens ;
Grimme, Stefan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (19) :2722-2729
[2]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[3]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[4]   A vision for the future of genomics research [J].
Collins, FS ;
Green, ED ;
Guttmacher, AE ;
Guyer, MS .
NATURE, 2003, 422 (6934) :835-847
[5]   Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes [J].
Cumings, J ;
Zettl, A .
SCIENCE, 2000, 289 (5479) :602-604
[6]   EFFECTS OF CONFIGURATION INTERACTION ON INTENSITIES AND PHASE SHIFTS [J].
FANO, U .
PHYSICAL REVIEW, 1961, 124 (06) :1866-&
[7]   Graphene as a subnanometre trans-electrode membrane [J].
Garaj, S. ;
Hubbard, W. ;
Reina, A. ;
Kong, J. ;
Branton, D. ;
Golovchenko, J. A. .
NATURE, 2010, 467 (7312) :190-U73
[8]   Extracting subnanometer single shells from ultralong multiwalled carbon nanotubes [J].
Hong, BH ;
Small, JP ;
Purewal, MS ;
Mullokandov, A ;
Sfeir, MY ;
Wang, F ;
Lee, JY ;
Heinz, TF ;
Brus, LE ;
Kim, P ;
Kim, KS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14155-14158
[9]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880
[10]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710