Investigation of Different Free Image Analysis Software for High-Throughput Droplet Detection

被引:9
作者
Sanka, Immanuel [1 ]
Bartkova, Simona [1 ]
Pata, Pille [1 ]
Smolander, Olli-Pekka [1 ]
Scheler, Ott [1 ]
机构
[1] Tallinn Univ Technol, Dept Chem & Biotechnol, EE-12618 Tallinn, Estonia
来源
ACS OMEGA | 2021年 / 6卷 / 35期
关键词
DIGITAL PCR; MICROFLUIDICS; QUANTIFICATION; PLATFORM; TOOL;
D O I
10.1021/acsomega.1c02664
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Droplet microfluidics has revealed innovative strategies in biology and chemistry. This advancement has delivered novel quantification methods, such as droplet digital polymerase chain reaction (ddPCR) and an antibiotic heteroresistance analysis tool. For droplet analysis, researchers often use image-based detection techniques. Unfortunately, the analysis of images may require specific tools or programming skills to produce the expected results. In order to address the issue, we explore the potential use of standalone freely available software to perform image-based droplet detection. We select the four most popular software and classify them into rule-based and machine learning-based types after assessing the software's modules. We test and evaluate the software's (i) ability to detect droplets, (ii) accuracy and precision, and (iii) overall components and supporting material. In our experimental setting, we find that the rule-based type of software is better suited for image-based droplet detection. The rule-based type of software also has a simpler workflow or pipeline, especially aimed for non-experienced users. In our case, CellProfiler (CP) offers the most user-friendly experience for both single image and batch processing analyses.
引用
收藏
页码:22625 / 22634
页数:10
相关论文
共 73 条
  • [1] Abdul-Jawad B., GROOVY GRAILS RECIPE
  • [2] Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
    Arganda-Carreras, Ignacio
    Kaynig, Verena
    Rueden, Curtis
    Eliceiri, Kevin W.
    Schindelin, Johannes
    Cardona, Albert
    Seung, H. Sebastian
    [J]. BIOINFORMATICS, 2017, 33 (15) : 2424 - 2426
  • [3] Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics
    Baccouche, Alexandre
    Okumura, Shu
    Sieskind, Remi
    Henry, Elia
    Aubert-Kato, Nathanael
    Bredeche, Nicolas
    Bartolo, Jean-Francois
    Taly, Valerie
    Rondelez, Yannick
    Fujii, Teruo
    Genot, Anthony J.
    [J]. NATURE PROTOCOLS, 2017, 12 (09) : 1912 - 1932
  • [4] QuPath: Open source software for digital pathology image analysis
    Bankhead, Peter
    Loughrey, Maurice B.
    Fernandez, Jose A.
    Dombrowski, Yvonne
    Mcart, Darragh G.
    Dunne, Philip D.
    McQuaid, Stephen
    Gray, Ronan T.
    Murray, Liam J.
    Coleman, Helen G.
    James, Jacqueline A.
    Salto-Tellez, Manuel
    Hamilton, Peter W.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [5] Droplet image analysis with user-friendly freeware CellProfiler
    Bartkova, Simona
    Vendelin, Marko
    Sanka, Immanuel
    Pata, Pille
    Scheler, Ott
    [J]. ANALYTICAL METHODS, 2020, 12 (17) : 2287 - 2294
  • [6] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [7] COMPARING METHODS OF MEASUREMENT - WHY PLOTTING DIFFERENCE AGAINST STANDARD METHOD IS MISLEADING
    BLAND, JM
    ALTMAN, DG
    [J]. LANCET, 1995, 346 (8982): : 1085 - 1087
  • [8] Bland JM, 1999, STAT METHODS MED RES, V8, P135, DOI 10.1177/096228029900800204
  • [9] Bokeh Development Team, 2018, Bokeh: Python library for interactive visualization
  • [10] Bonnal RJP, 2019, METHODS MOL BIOL, V1910, P747, DOI 10.1007/978-1-4939-9074-0_25