Partially ordered cooperative games:: extended core and Shapley value

被引:15
作者
Puerto, J. [1 ]
Fernandez, F. R. [1 ]
Hinojosa, Y. [2 ]
机构
[1] Univ Seville, Fac Math, Dept Estadist & Invest Operat, E-41012 Seville, Spain
[2] Univ Seville, Fac CCEE, Dept Econ Aplicada 1, E-41012 Seville, Spain
关键词
cooperative games; core; Shapley value; partial order;
D O I
10.1007/s10479-007-0242-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we analyze cooperative games whose characteristic function takes values in a partially ordered linear space. Thus, the classical solution concepts in cooperative game theory have to be revisited and redefined: the core concept, Shapley-Bondareva theorem and the Shapley value are extended for this class of games. The classes of standard, vector-valued and stochastic cooperative games among others are particular cases of this general theory.
引用
收藏
页码:143 / 159
页数:17
相关论文
共 23 条
[1]  
[Anonymous], 1992, HDB GAME THEORY EC A
[2]  
[Anonymous], CTR DISSERTATION SER
[3]  
AUBIN JP, 1987, OPTIMA EQUILIBRIA IN
[4]  
Aumann R. J., 1974, Values of Non-Atomic Games
[5]  
BILBAO M, 2000, COOPERATIVE GAMES C
[6]   SOME THEOREMS ON CORE OF AN N-PERSON GAME WITHOUT SIDE-PAYMENTS [J].
BILLERA, LJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 18 (03) :567-&
[7]   Core solutions in vector-valued games [J].
Fernández, FR ;
Hinojosa, MA ;
Puerto, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (02) :331-360
[8]  
Fern┬u├ndez FR., 2002, INT GAME THEORY REV, V4, P265, DOI DOI 10.1142/S0219198902000690
[9]  
Gillies D. B., 1953, Ph.D. thesis)
[10]   COOPERATIVE GAMES IN STOCHASTIC CHARACTERISTIC FUNCTION FORM [J].
GRANOT, D .
MANAGEMENT SCIENCE, 1977, 23 (06) :621-630