Remarks on stability of some inhomogeneous functional equations

被引:32
作者
Brzdek, Janusz [1 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
关键词
Cauchy equation; Cocycle; Hyperstability; Stability of functional equations; HYPERSTABILITY;
D O I
10.1007/s00010-014-0274-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is an expository paper in which we present some simple observations on the stability of some inhomogeneous functional equations. In particular, we state several stability results for the inhomogeneous Cauchy equation f(x + y) = f(x) + f(y) + d(x, y) and for the inhomogeneous forms of the Jensen and linear functional equations.
引用
收藏
页码:83 / 96
页数:14
相关论文
共 31 条
[1]  
[Anonymous], 1998, Characterizations of Information Measures
[2]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[3]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[4]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[5]   On Some Recent Developments in Ulam's Type Stability [J].
Brillouet-Belluot, Nicole ;
Brzdek, Janusz ;
Cieplinski, Krzysztof .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[6]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[7]  
Brzdek J., 2013, Abstr. Appl. Anal, V2013, DOI [10.1155/2013/401756, DOI 10.1155/2013/401756]
[8]  
Brzdek J., 1993, AEQUATIONES MATH, V46, P56
[9]  
Brzdek J., 1994, Stability of Mappings of Hyers-Ulam Type, P19
[10]   A HYPERSTABILITY RESULT FOR THE CAUCHY EQUATION [J].
Brzdek, Janusz .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :33-40