Shock reliability enhancement for MEMS vibration energy harvesters with nonlinear air damping as a soft stopper

被引:15
作者
Chen, Shao-Tuan [1 ]
Du, Sijun [1 ]
Arroyo, Emmanuelle [1 ]
Jia, Yu [1 ,2 ]
Seshia, Ashwin [1 ]
机构
[1] Univ Cambridge, Nanosci Ctr, Cambridge CB3 0FF, England
[2] Univ Chester, Dept Mech Engn, Chester CH1 4BJ, Cheshire, England
基金
英国工程与自然科学研究理事会;
关键词
nonlinear damping; shock reliability; soft mechanical stopper; STRENGTH; FRACTURE;
D O I
10.1088/1361-6439/aa82ed
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a novel application of utilising nonlinear air damping as a soft mechanical stopper to increase the shock reliability for microelectromechanical systems (MEMS) vibration energy harvesters. The theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness are presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device.
引用
收藏
页数:13
相关论文
共 36 条
[11]   Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system [J].
Elfrink, R. ;
Renaud, M. ;
Kamel, T. M. ;
de Nooijer, C. ;
Jambunathan, M. ;
Goedbloed, M. ;
Hohlfeld, D. ;
Matova, S. ;
Pop, V. ;
Caballero, L. ;
van Schaijk, R. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (10)
[12]   A piezomagnetoelastic structure for broadband vibration energy harvesting [J].
Erturk, A. ;
Hoffmann, J. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[13]   Issues in mathematical modeling of piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (06)
[14]   A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2008, 130 (04)
[15]   Wafer level packaging of MEMS [J].
Esashi, Masayoshi .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (07)
[16]   Mechanical characterization of thick polysilicon films:: Young's modulus and fracture strength evaluated with microstructures [J].
Greek, S ;
Ericson, F ;
Johansson, S ;
Fürtsch, M ;
Rump, A .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1999, 9 (03) :245-251
[17]   Toward energy harvesting using active materials and conversion improvement by nonlinear processing [J].
Guyomar, D ;
Badel, A ;
Lefeuvre, E ;
Richard, C .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (04) :584-595
[18]   DAMPING CHARACTERISTICS OF BEAM-SHAPED MICRO-OSCILLATORS [J].
HOSAKA, H ;
ITAO, K ;
KURODA, S .
SENSORS AND ACTUATORS A-PHYSICAL, 1995, 49 (1-2) :87-95
[19]   Power Optimization by Mass Tuning for MEMS Piezoelectric Cantilever Vibration Energy Harvesting [J].
Jia, Yu ;
Seshia, Ashwin A. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2016, 25 (01) :108-117
[20]  
Kazmierski TJ, 2011, ENERGY HARVESTING SYSTEMS: PRINCIPLES, MODELING AND APPLICATIONS, P79, DOI 10.1007/978-1-4419-7566-9_2