iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network

被引:66
作者
Yang, Yuning [1 ]
Hou, Zilong [2 ]
Ma, Zhiqiang [1 ]
Li, Xiangtao [2 ]
Wong, Ka-Chun [3 ]
机构
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun, Peoples R China
[2] Jilin Univ, Sch Artificial Intelligence, Changchun, Jilin, Peoples R China
[3] City Univ Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; deep hierarchical network; CircRNA-RBP interaction site identification; CircRNA2Vec; CIRCULAR RNAS; PROTEIN; TRANSLATION; BIOGENESIS; SEQUENCE;
D O I
10.1093/bib/bbaa274
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Circular RNAs (circRNAs) are widely expressed in eukaryotes. The genome-wide interactions between circRNAs and RNA-binding proteins (RBPs) can be probed from cross-linking immunoprecipitation with sequencing data. Therefore, computational methods have been developed for identifying RBP binding sites on circRNAs. Unfortunately, those computational methods often suffer from the low discriminative power of feature representations, numerical instability and poor scalability. To address those limitations, we propose a novel computational method called iCircRBP-DHN using deep hierarchical network for discriminating circRNA-RBP binding sites. The network architecture can be regarded as a deep multi-scale residual network followed by bidirectional gated recurrent units (BiGRUs) with the self-attention mechanism, which can simultaneously extract local and global contextual information. Meanwhile, we propose novel encoding schemes by integrating CircRNA2Vec and the K-tuple nucleotide frequency pattern to represent different degrees of nucleotide dependencies. To validate the effectiveness of our proposed iCircRBP-DHN, we compared its performance with other computational methods on 37 circRNAs datasets and 31 linear RNAs datasets, respectively. The experimental results reveal that iCircRBP-DHN can achieve superior performance over those state-of-the-art algorithms. Moreover, we perform motif analysis on circRNAs bound by those different RBPs, demonstrating that our proposed CircRNA2Vec encoding scheme can be promising. The iCircRBP-DHN method is made available at https://github.com/houzl3416/iCircRBP-DHN.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1 [J].
Abdelmohsen, Kotb ;
Panda, Amaresh C. ;
Munk, Rachel ;
Grammatikakis, Ioannis ;
Dudekula, Dawood B. ;
De, Supriyo ;
Kim, Jiyoung ;
Noh, Ji Heon ;
Kim, Kyoung Mi ;
Martindale, Jennifer L. ;
Gorospe, Myriam .
RNA BIOLOGY, 2017, 14 (03) :361-369
[2]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[3]  
[Anonymous], 2014, INT C MACH LEARN
[4]   Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics [J].
Asgari, Ehsaneddin ;
Mofrad, Mohammad R. K. .
PLOS ONE, 2015, 10 (11)
[5]   circRNA Biogenesis Competes with Pre-mRNA Splicing [J].
Ashwal-Fluss, Reut ;
Meyer, Markus ;
Pamudurti, Nagarjuna Reddy ;
Ivanov, Andranik ;
Bartok, Osnat ;
Hanan, Mor ;
Evantal, Naveh ;
Memczak, Sebastian ;
Rajewsky, Nikolaus ;
Kadener, Sebastian .
MOLECULAR CELL, 2014, 56 (01) :55-66
[6]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[7]   circDeep: deep learning approach for circular RNA classification from other long non-coding RNA [J].
Chaabane, Mohamed ;
Williams, Robert M. ;
Stephens, Austin T. ;
Park, Juw Won .
BIOINFORMATICS, 2020, 36 (01) :73-80
[8]  
Cho K., 2014, C EMP METH NAT LANG, P1724, DOI [10.3115/v1/D14-1179, DOI 10.3115/V1/D14-1179]
[9]   The RNA Binding Protein Quaking Regulates Formation of circRNAs [J].
Conn, Simon J. ;
Pillman, Katherine A. ;
Toubia, John ;
Conn, Vanessa M. ;
Salmanidis, Marika ;
Phillips, Caroline A. ;
Roslan, Suraya ;
Schreiber, Andreas W. ;
Gregory, Philip A. ;
Goodall, Gregory J. .
CELL, 2015, 160 (06) :1125-1134
[10]   CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs [J].
Dudekulay, Dawood B. ;
Panda, Amaresh C. ;
Grammatikakis, Ioannis ;
De, Supriyo ;
Abdelmohsen, Kotb ;
Gorospe, Myriam .
RNA BIOLOGY, 2016, 13 (01) :34-42