TWO NEW KINDS OF NUMBERS AND RELATED DIVISIBILITY RESULTS

被引:6
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
integer sequences; binomial coefficients; congruences; primes of the form x(2) + y(2); CONGRUENCES; SUMS; PRODUCTS;
D O I
10.4064/cm7405-1-2018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We mainly introduce two new kinds of numbers given by R-n = Sigma(n)(k=0) ((n)(k)) ((n + k)(k)) 1/2k - 1 (n = 0,1,2,...), S-n = Sigma(n)(k=0) ((n)(k))(2) ((2k)(k)) (2k + 1) (n = 0,1,2,...). We find that such numbers have many interesting arithmetic properties. For example, if p 1 (mod 4) is a prime with p = x(2 )+ y(2) (where x 1 (mod 4) and y 0 (mod 2)), then R(p-1)/2 p - (-1)((p-1)/4)2x ( mod p(2)). Also, 1/n(2) Sigma(n-1)(k=0) S-k is an element of Z and 1/n Sigma(n-1)(k=0) S-k(x) is an element of Z[x] for all n = 1,2,..., where S-k(x) = Sigma(k)(j=0) ((k)(j))(2) ((2j)(j)) (2j + 1)x(j). For any positive integers a and n, we show that, somewhat surprisingly, 1/n(2) Sigma(n-1)(k=0)(2k + 1) ((n - 1)(k))(a) ((-n - 1)(k))(a) is an element of Z and 1/n Sigma(n-1)(k=0) ((n - 1)(k))(a) ((-n - 1)(k))(a)/4k(2) - 1 is an element of Z. We also solve a conjecture of V. J. W. Guo and J. Zeng, and pose several conjectures for further research.
引用
收藏
页码:241 / 273
页数:33
相关论文
共 18 条
  • [1] Andrews G. E., 1999, Encyclopedia of Mathematics and its Applications
  • [2] [Anonymous], 1862, Quart. J. Pure Appl. Math
  • [3] [Anonymous], 1998, Gauss and Jacobi Sums
  • [4] [Anonymous], 1972, COMBINATORIAL IDENTI
  • [5] [Anonymous], 1996, A=B.
  • [6] ON THE MOD P2 DETERMINATION OF ((P-1)/2(P-1)/4)
    CHOWLA, S
    DWORK, B
    EVANS, R
    [J]. JOURNAL OF NUMBER THEORY, 1986, 24 (02) : 188 - 196
  • [7] NEW CONGRUENCES FOR SUMS INVOLVING APERY NUMBERS OR CENTRAL DELANNOY NUMBERS
    Guo, Victor J. W.
    Zeng, Jiang
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (08) : 2003 - 2016
  • [8] Ireland K., 1990, GRAD TEXTS MATH, V84
  • [9] Congruences for central binomial sums and finite polylogarithms
    Mattarei, Sandro
    Tauraso, Roberto
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (01) : 131 - 157
  • [10] GENERALIZED POWERS
    OLIVE, G
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (06) : 619 - &