Multi-Channel Input Deep Convolutional Neural Network for Mammogram Diagnosis

被引:1
|
作者
Bae, Ji Hoon [1 ]
Park, Joon Hyeon [1 ]
Park, Jin Hyeok [1 ]
Sunwoo, Myung Hoon [1 ]
机构
[1] Ajou Univ, Dept Elect & Comp Engn, Suwon, South Korea
关键词
Deep learning; Mammogram; Mammography; Multi-view classification;
D O I
10.1109/ISOCC50952.2020.9333038
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image diagnosis should consider the information contained in multiple images, not just a single image, such as natural image classification. Mammography is the most basic X-ray screening method for diagnosing breast cancer, and mammograms have four images per patient. Convolutional neural networks should be able to diagnose using these four images. This paper proposes a convolutional neural network to simultaneously concatenate four images to solve the multi-view problem. The proposed network was trained and validated with the digital database for screening mammography (DDSM) and achieved 0.952 area under the ROC curve (AUC) for the two-class problem (positive vs. negative). This paper also proposes a new approach to localize lesions without patch labels or mask labels.
引用
收藏
页码:23 / 24
页数:2
相关论文
共 50 条
  • [21] A multi-channel attention graph convolutional neural network for node classification
    Rui Zhai
    Libo Zhang
    Yingqi Wang
    Yalin Song
    Junyang Yu
    The Journal of Supercomputing, 2023, 79 : 3561 - 3579
  • [22] Video fire recognition based on multi-channel convolutional neural network
    Zhong, Chen
    Shao, Yu
    Ding, Hongjun
    Wang, Ke
    2020 3RD INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY (CISAT) 2020, 2020, 1634
  • [23] Toxicity Prediction Method Based on Multi-Channel Convolutional Neural Network
    Yuan, Qing
    Wei, Zhiqiang
    Guan, Xu
    Jiang, Mingjian
    Wang, Shuang
    Zhang, Shugang
    Li, Zhen
    MOLECULES, 2019, 24 (18):
  • [24] Multi-channel convolutional neural network architectures for thyroid cancer detection
    Zhang, Xinyu
    Lee, Vincent C. S.
    Rong, Jia
    Liu, Feng
    Kong, Haoyu
    PLOS ONE, 2022, 17 (01):
  • [25] Multi-Channel Convolutional Neural Network for Twitter Emotion and Sentiment Recognition
    Islam, Jumayel
    Mercer, Robert E.
    Xiao, Lu
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 1355 - 1365
  • [26] Software Defect Prediction via Multi-Channel Convolutional Neural Network
    Lang, Chen
    Li, Jidong
    Kobayashi, Takashi
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2021), 2021, : 543 - 554
  • [27] Comparative Analysis of Multilayer Backpropagation and Multi-Channel Deep Convolutional Neural Network for Human Activity Recognition
    Priyadharshini, J. Mary Hanna
    Kavitha, S.
    Bharathi, B.
    RECENT DEVELOPMENTS IN MATHEMATICAL ANALYSIS AND COMPUTING, 2019, 2095
  • [28] Mental Disease Feature Extraction with MRI by 3D Convolutional Neural Network with Multi-Channel Input
    Cao, Lijun
    Liu, Zhi
    Cao, Yankun
    Li, Kening
    He, Xiaofu
    2016 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD), 2016, : 224 - 227
  • [29] Opacity annotation of diffuse lung diseases using deep convolutional neural network with multi-channel information
    Mabu, Shingo
    Kido, Shoji
    Hashimoto, Noriaki
    Hirano, Yasushi
    Kuremoto, Takashi
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [30] A Lightweight Bearing Fault Diagnosis Method Based on Multi-Channel Depthwise Separable Convolutional Neural Network
    Ling, Liuyi
    Wu, Qi
    Huang, Kaiwen
    Wang, Yiwen
    Wang, Chengjun
    ELECTRONICS, 2022, 11 (24)