Multi-wavelength mid-infrared micro-spectral imaging using semiconductor lasers

被引:17
作者
Guo, B [1 ]
Wang, Y [1 ]
Peng, C [1 ]
Luo, GP [1 ]
Le, HQ [1 ]
机构
[1] Univ Houston, Dept Elect & Comp Engn, Photon Device & Syst Labs, Houston, TX 77204 USA
关键词
mid-infrared; spectral imaging; mid-infrared semiconductor lasers; quantum cascade lasers;
D O I
10.1366/000370203322102906
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Infrared (IR, 3-12-mum) microscopic spectral imaging is an important analytical technique. Many current instruments employ thermal IR light sources, which suffer the problem of low brightness and high noise. This paper evaluates the system engineering merit in using semiconductor lasers, which offer orders-of-magnitude-higher power, brightness, and lower noise. A microscopic spectral imaging system using semiconductor lasers (quantum cascade) as illuminators, and focal plane array detectors demonstrated a high signal-to-noise ratio (>20 dB) at video frame rate for a large illuminated area. The comparative advantages of laser vs. thermal light source are analyzed and demonstrated. Microscopic spectral imaging with fixed wavelength and tunable lasers of 4.6-, 5.1-, 6-, and 9.3-mum wavelength was applied to a number of representative samples that consist of biological tissues (plant and animal), solid material (a stack of laminated polymers), and liquid chemical (benzene). Transmission spectral images with similar to30-dB dynamic range were obtained with clear evidence of spectral features for different samples. The potential of more advanced systems with a wide coverage of spectral bands is discussed.
引用
收藏
页码:811 / 822
页数:12
相关论文
共 39 条
[1]   High spatial resolution for IR imaging using an IR diode laser [J].
Bailey, JA ;
Dyer, RB ;
Graff, DK ;
Schoonover, JR .
APPLIED SPECTROSCOPY, 2000, 54 (02) :159-163
[2]   Optical-pumping injection cavity (OPIC) Mid-IR "W" lasers with high efficiency and low loss [J].
Bewley, WW ;
Felix, CL ;
Vurgaftman, I ;
Stokes, DW ;
Meyer, JR ;
Lee, H ;
Martinelli, RU .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (05) :477-479
[3]   Low-threshold interband cascade lasers with power efficiency exceeding 9% [J].
Bruno, JD ;
Bradshaw, JL ;
Yang, RQ ;
Pham, JT ;
Wortman, DE .
APPLIED PHYSICS LETTERS, 2000, 76 (22) :3167-3169
[4]   New frontiers in quantum cascade lasers and applications [J].
Capasso, F ;
Gmachl, C ;
Paiella, R ;
Tredicucci, A ;
Hutchinson, AL ;
Sivco, DL ;
Baillargeon, JN ;
Cho, AY ;
Liu, HC .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) :931-947
[5]   Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission [J].
Capasso, F ;
Paiella, R ;
Martini, R ;
Colombelli, R ;
Gmachl, C ;
Myers, TL ;
Taubman, MS ;
Williams, RM ;
Bethea, CG ;
Unterrainer, K ;
Hwang, HY ;
Sivco, DL ;
Cho, AY ;
Sergent, AM ;
Liu, HC ;
Whittaker, EA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :511-532
[6]  
CAPASSO F, 1998, SEMICONDUCOR QUANTUM
[7]   Infrared spectroscopic imaging: From planetary to cellular systems [J].
Colarusso, P ;
Kidder, LH ;
Levin, IW ;
Fraser, JC ;
Arens, JF ;
Lewis, EN .
APPLIED SPECTROSCOPY, 1998, 52 (03) :106A-120A
[8]  
Crocombe R. A., 1997, MICROSCOPY MICROA S2, V3, P863
[9]  
Esau K, 1967, Plant anatomy, V2nd
[10]   Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation [J].
Faist, J ;
Hofstetter, D ;
Beck, M ;
Aellen, T ;
Rochat, M ;
Blaser, S .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :533-546